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Abstract—Infrared images are commonly afflicted by distor-
tions such as non-uniformity. Non-uniformity is characterized
by horizontal and vertical fixed pattern noise. Accurately
estimating the amount of non-uniformity present in an image
and removing that amount of non-uniformity noise are open
problems. Several estimators of non-uniformity exist, but their
ability to estimate degrades with the presence of other sources
of noise. Specifically, most of these metrics lack the robustness
demanded by a more complete non-uniformity model.

Previous non-uniformity correction algorithms are compared
and found to underperform relative to a more complete model
of non-uniformity that we have developed. Using this model,
we have created a new denoising algorithm, which we call
the Gaussian scale mixture perceptual pattern denoiser. The
new model and algorithm can fully characterize non-uniformity
using covariance matrices.

Index Terms—Non-uniformity; natural scene statistics; fixed-
pattern noise; Gaussian scale mixture; non-uniformity correc-
tion

I. INTRODUCTION

Long wavelength infrared (LWIR) images are often used
for target detection and temperature measurement. Capturing
wavelengths between 8 and 14 micrometers, these images
have the ability to “see” through smoke, fog, and dust and are
especially useful in low visible-light conditions. For example,
firefighters image the heat in a room to determine critical
burn points and environmental hazards. The ability of a
firefighter to detect such points and hazards is ultimately
connected to saving lives [1]. Other applications of infrared
images include surveillance, missile guidance, and night
vision.

Given the many uses of LWIR images, they have been well
studied. Mooney characterized sources of spatial noise [2]
and the effect of noise on minimum resolvable temperature
differences (MTD) as a function of frequency [3]. Lopez-
Alonso further characterized spatial noise in IR images by
using Principle Components Analysis (PCA) to separate
spatial and temporal noise from a sequence of frames [4].
These studies led Pezoa and Medina to model the non-
uniformity (NU) noise using spectral domain characteristics
[5] that are distinctly different from independent (white)
spatial noise. Using this NU model, Pérez et al. measured and
compared the efficacy of several multi-frame non-uniformity
correction (NUC) algorithms [6] and developed methods for
extracting the structure of the underlying fixed-noise pattern
[7].

This study and characterization of noise behavior in in-
frared images motivates further study regarding noise re-
moval. To date, several effective solutions exist for reducing
additive white noise in visible light images. More recently,
the Gaussian scale mixture model (GSM) has been suc-
cessfully used in the development of algorithms that can
remove white noise in images by utilizing the fact that
wavelet subbands can be ”Gaussianized” by multiplication
by a random variable [8]. In LWIR images, additive noise
is often a mixture of white noise and non-uniformity noise.
For additive white noise, Kafieh and Rabbani apply locally
adaptive wavelet shrinkage successfully to medical infrared
images [9]. A search of the available literature yields little
information regarding the utility of wavelet denoising tech-
niques for non-uniformity within infrared images.

Top-performing LWIR non-uniformity denoising algo-
rithms have generally been designed using heuristics. In ad-
dition, denoising algorithms are usually based on an oversim-
plified assumption of the non-uniformity. Total variation non-
uniformity correction (TVNUC) [10] performs iterative and
weighted smoothing to reduce the “roughness” as measured
by the roughness index. Another top-performing algorithm,
the midway infrared equalization (MIRE) [11], corrects
column-wise histograms of an image by locally averag-
ing empirical column-wise cumulative distribution functions
(CDFs) for removing spatial flicker. As will be explained
later, a more accurate model of non-uniformity noise can be
described as a well-defined spatially-varying striping pattern
with certain spectral domain properties.

Moreover, these algorithms do not take into account the
powerful priors presented by a deeper understanding of
LWIR natural scene statistics (NSS). Such a study found
that NSS can be used to evaluate LWIR image quality [12].
Additionally, this study provided evidence that NSS features
can produce a highly effective estimate for detecting the
presence and magnitude of non-uniformity noise in infrared
images. These statistics allow a NU correction algorithm to
gauge the quality of an image before beginning the correction
process to achieve an near-optimal result, as will be presented
in the proceeding sections.

II. IMAGES

A corpus of 468 high-quality LWIR images was built
up from the NIST [13] and MORRIS [14] databases. The
NIST database contains images taken from an indoor setting



(a) INU (columns) (b) INU (columns and rows)

Fig. 1. Model of NU in infrared images

containing many hotspots, and each 16 bit image has resolu-
tion 640x480. The MORRIS database contains mostly urban
images of people, cars, and buildings, and each 8 bit image
has resolution 384x288.

Each image is converted to floating point and normalized
so that the range of luminances is between 0 and 1. This al-
lows for simplifying calculations regarding noise magnitude
since the bit depths between NIST and MORRIS differ.

III. NON-UNIFORMITY MODELS

Non-uniformity is produced by combinations of vertical
or horizontal striping noise that arises from manufacturing
inconsistencies in the read-out architecture found in infrared
focal-plane sensor arrays. These patterns may also result
from dark current and segmented sensor capture areas [5]
[15] [4].

Often, this striping artifact is assumed to only produce
uniform stripes aligned along one dimension of an image.
Unfortunately, this assumption is not entirely accurate. Pezoa
and Medina proposed another model of non-uniformity after
studying its spectral properties [5]. They found that the
horizontal and vertical lines that appear in infrared images
are not simply independent gains. They define an additive
noisy non-uniformity image INU in the spectral domain
using

|ĨNU (u, v)| = Buexp
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6 ĨNU (u, v) ∼ U[−π, π] (2)

where ĨNU is the Fourier Transform representation of the
noise image INU , Bu = Bv = 5.2, σu = σv = 2.5, and
where U[a, b] denotes the uniform distribution on [a, b]. The
severity of NU can be controlled by scaling the dynamic
range of INU using a standard deviation parameter σ. INU
is scaled to match the dynamic range of a same-sized matrix
sampled from N (0, σ2) and added to pristine image to
produce the distorted image. This model will be referred to
as the spectral non-uniformity model. Column-based spectral
NU is exemplified in Fig. 1(a) (by letting Bu = 0), and the
full spectral NU model is depicted in Fig. 1(b).

In NUC algorithms, producing a reference-free estimate
of the NU in an image is essential to evaluating correction
performance on-the-fly [6]. Commonly used methods for
estimating NU magnitude include the Roughness index (Ro),
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Fig. 2. Scatter-plots comparing ground truth vertical NU standard deviation
(σV ) to model predictions in Figs. 2a,2b,2c, and 2d. Predictions made on
images also distorted with additive white noise in Figs. 2e, 2f, 2g, and 2h.

Effective Roughness index (ERo), and SNR. Since LWIR
images commonly contain both non-uniformity noise and
additive white noise, measurements of non-uniformity noise
should be largely independent of noise, and vice versa.

A common method for estimating NU is the spatial signal-
to-noise ratio (SNR) of the image, I , using µ/σ where σ and
µ are the standard deviation and mean pixel intensities within
a localized area. Another common method for estimating NU
is the Roughness [16] index:

Ro(I) =
‖h1 ∗ I‖1 + ‖h2 ∗ I‖1

‖I‖1
(3)

where h1 is the 1-D differencing filter with impulse response
[1,−1], h2 = h1

T , ‖ · ‖1 is the L1 norm, and ∗ indicates
convolution. Based on Ro, the Effective Roughness [17]
index is then defined as

ERo(I) = Ro(g ∗ I) (4)

where g is a high-pass filter, with the additional modification
that in (4), the L2 norm is used in (3) instead of the L1 norm.
Here g ∗ I = I − µ.

Each of these roughness indices measures the general
roughness of a image, but they do not account for the natural
scene statistics properties found to exist in both visible light
and LWIR images. A novel method for measuring NU, the
perceptual NU index (PNU), was developed in [12], where
102 features are extracted from an image and mapped to a
ground truth σNU value as described in the spectral noise
model. This method uses machine-learning to avoid some
weaknesses found in other approaches. Observed weaknesses
with other NU estimators include dependence on the size of
the input image, sensitivity to high frequency content in an
image, and dependence on other types of noise in an image.

To test the predictive capabilities of each of the NU estima-
tors, the image corpus was distorted with simulated spectral
vertical NU and horizontal NU of parameters σV , σH ∈
[0, 0.1]. Given this continuous range, PNU is trained on
ground truth vertical NU magnitude using a leave-one-out
policy (i.e. one content type was left out and the remaining
content used for testing). Also, Ro and ERo indices were
appropriately modified to focus on vertical distortion. The



estimates for σV are plotted in Fig. 2 for SNR, Ro, ERo, and
PNU indices. From Fig. 2(a), PNU is observed to be very
highly correlated (Spearman rank Correlation Coefficient
(SRCC) of 0.97) with σV . The SNR estimate in Fig. 2(b)
appears uncorrelated with σV . Ro and ERo in Figs. 2(c)
and 2(d) demonstrate a weak correlation. Clearly, the best
estimator is PNU since it maintains a clearer one-to-one re-
lationship between prediction and ground truth and is robust
against sources of horizontally striping non-uniformity.

To test this idea in the presence of additive white noise
(AWN), the same test as above was duplicated with the
exception that each image was also randomly distorted with
AWN distributed as N (0, σ2

WN ) where standard deviation,
σAWN ∈ [0, 0.1]. The same NU estimates are computed as
before, and corresponding scatter-plots are depicted in the
bottom row in Fig. 2 for the SNR, Ro, ERo, and PNU indices.
Ro and ERo indices appear to further decorrelate from σV ,
losing a significant portion of their predictive capabilities
with the additional noise. However, PNU is robust and
measures almost as well as the case in Fig. 2(a) without
AWN. Again, the best overall estimator is PNU as it is largely
unaffected by the AWN.

IV. GSMPP MODEL

Newly proposed here is a GSM-based perceptual pattern
(GSMPP) denoiser. Inspired by the perceptual aspect and
success of the gaussian scale mixture model, GSMPP pro-
vides a theoretical model for removing the pattern noise that
has been noted to afflict infrared images.

Previously, Gaussian scale mixture (GSM) [8] denoising
has been applied to visible light images perturbed by white
noise. The GSM denoiser allows wavelet coefficients to
be ”Gaussianized” then well characterized by their second
moments computed with respect to neighboring subband
coefficients. Possibly due to the perceived difficulty in
extracting noise covariance matrices without knowing the
image content, this method has not previously been extended
further for noise that introduces dependencies and patterns.

The GSM model is applied on the result of a steerable
pyramid decomposition [18], which separates an image into
6 orientations, 3 scales, a high-pass residual band, and
a low-pass residual band. From this transform, a random
vector ḡ(x, θ, b) is gathered with respect to spatial location
x = (x, y), orientation θ, and pyramid level b. Let b = 0 refer
to the high-pass residual, b = {1, 2, 3} refer to the scale-
orientated subbands, and b = 4 refer to the low-pass residual.
This vector, for b ∈ {0, 1, 2} is constructed by collecting 9
coefficients plus 1 at each of the 5 neighboring orientated
subbands, and 1 from the parent subband to produce a total
length (M ) of 15. Vectors from b = 3 are constructed
the same except without the parent subband coefficient to
produce a total length (M ) of 14.

These extracted vectors, ḡ are assumed to follow the
Gaussian scale mixture model

ḡ(x, θ, b) = z(x, θ, b)γ̄(x, θ, b) (5)
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(a) C(σV , ·, 0)
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(b) C(σV , 0, 1)
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(c) C(σV , 0, 2)
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(d) C(σV , 0, 3)
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Fig. 3. Plots 3a through 3d represent sampled covariance matrix coefficients
for different σV . Plots 3e through 3h represent the 6th order poly-fits used
to approximate the true noise covariance matrix coefficients as a function of
σV . All plots contain 15∗15 = 225 coefficients except for plots 3d and 3h
which represent 14 ∗ 14 = 196 coefficients. Most lines overlap indicating
matrix coefficients that mutually scale at the same rate with σV .

where z is a positive random scalar estimated, using max-
imimum likelihood, to be

ẑML =

√
ḡTC−1

γ ḡ

M
(6)

where γ̄ ∼ N (0, Cγ). Then if an image is contaminated by
an additive noise N , we have

ḡN (x, θ, b) = ḡ(x, θ, b) +N(x, θ, b). (7)

The best mean-squared-error (MSE) estimate of the true
value of ḡ(x, y, θ, b) given ḡN (x, y, θ, b) and z(x, y, θ, b) is

ĝ(x, θ, b) = E [ḡ(x, θ, b)|ḡN (x, θ, b), z(x, θ, b)]
= ẑCγ̄ [ẑCγ̄ + CN ]

−1
ḡN (x, θ, b)

(8)

where ẑ is computed using covariance matrix Cγ+N from the
noisy image. Thus, to estimate the original signal, 19 noise
covariance matrices CN must be estimated, 1 per subband,
since Cγ+N = Cγ + CN .

In the case of additive white noise, the noise covariance
matrix is simply

CNw
= σ2

Nw
I (9)

where σ2
Nw

is the variance of the additive noise and I is the
15x15 (or 14x14) identity matrix. To extend GSM denoising
to the spectral NU noise model for vertical noise, we must
fully characterize the 19 covariance matrices, CNU (σV , θ, b),
where σV is the standard deviation of the additive vertical
noise under the spectral model.

To analyze the behavior of the CNU (σV , θ, b), a random
sample of 20 LWIR images were selected and deformed
over the range σV ∈ {0.0001, 0.0003, ..., 0.1} to obtain the
structure of the CNU matrix parameterized on (σV , θ, b).
Each CNU was directly computed using the formula

CNU = CNU+γ − Cγ (10)

where Cγ was obtained from the pristine (non-distorted)
image and CNU+γ was obtained from the distorted image.



(a) Original (b) TVNUC (c) MIRE (d) GSMPP

Fig. 4. Algorithm performance on image with real vertical non-uniformity.

Fig. 5. Main steps followed to perform denoising process for GSMPP.

These samples of CNU were appropriately averaged to
estimate a content-independent noise covariance. To account
for differences in power observed at the covariance matrices
per each image, the resulting estimate of CNU is normalized
by dividing out the absolute sum of the covariance matrix
coefficients. Plots of the individual terms in CNU for increas-
ing σV are depicted in Fig. 3. Notice that with increasing
σV , each coefficient in each CNU matrix is monotonic,
and thus there is a one-to-one correspondence between each
covariance matrix and the parameter σV .

To model this correspondence, polynomial fits were ap-
plied. Figs. 3(a), 3(b), 3(c), and 3(d) demonstrate that the
6th degree polynomial fit to these sampled covariance coef-
ficients is adequate for modeling the monotonic behavior.

Given the functional mapping for CNU at each subband,
denoising then relies on an accurate estimate of σV , esti-
mated using PNU as developed in section III. Given these
components, the denoising algorithm GSMPP is complete,
as depicted fully in Fig. 5. The model first extracts the
NSS features associated with the PNU metric from an input
image. The PNU metric returns an estimate of σV from
which noise covariance matrices are generated. Each of these
matrices is multiplied by the sum of the absolute values in
the corresponding input image matrices, to account for the
total image power. The input image is then split into steerable
pyramid subbands. The GSM denoising algorithm uses the
generated CNU (σV , θ, b) followed by image reconstruction.

V. PERFORMANCE OF NUC MODELS

For evaluation, full-reference measurements such as
the mean-squared error (MSE), peak signal-to-noise ratio
(PSNR), and the Structural Similarity Index (SSIM) were
used. MSE measures the average squared deviation, PSNR
measures the error relative to the maximum signal level, and
SSIM provides a perceptually relevant measure of quality.

The input image corpus was distorted using the spec-
tral noise model using σV randomly sampled from
[0.0025, 0.025]. This range was chosen subjectively to pro-
vide perceptually separable samples of non-uniformity, rang-
ing from barely visible to almost overpowering. Results

TABLE I
MEAN FULL-REFERENCE MEASUREMENTS OF VERTICAL

NON-UNIFORMITY CORRECTION PERFORMANCE OVER 468 IMAGES

Model MSE PSNR SSIM
NONE 0.018 40.2 0.853
TVNUC 0.017 41.0 0.879
MIRE 0.034 33.7 0.874
GSMPP full 0.012 44.2 0.956
GSMPP w/σV 0.011 45.1 0.970
GSMPP w/CNU 0.010 46.4 0.978
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Fig. 6. SSIM measurements per image for each algorithm.

from each algorithm were computed by comparing the noise
corrected image with the pristine image. Table I depicts mean
measurements, and Fig. 6 depicts boxplots using SSIM.

In both Fig. 6 and Table I, “NONE” compares the noisy
images directly to the pristine images, to provide a baseline
for comparison. MIRE appears to increase the MSE and
PSNR, a result of the model’s flicker-based noise assumption.
TVNUC appears to produce an improvement relative to
MIRE, since reducing strong localized diagonals effectively
reduces non-uniformity. The “GSMPP full” model is a full
model as depicted in Fig. 5. The “GSMPP w/σV ” model uses
the ground truth σV in place of PNU. The “GSMPP w/CNU”
model uses the noise covariance matrix computed using both
reference and distorted images. The proposed GSMPP model
outperforms the other models considered here. Given these
results, improving PNU and refining estimated CNU matrices
can greatly improve GSMPP.

As a final comparison, an image with a vertical striping
pattern was selected from MORRIS. Fig. 4 depicts the results
of 3 correction algorithms on this image. TVNUC reduces
the NU in the image, but visibly degrades image quality.
Both MIRE and GSMPP remove most of the striping, with
GSMPP producing the smoother result.

VI. CONCLUSION AND FUTURE WORK

An algorithm has been developed and analyzed that
can outperform state-of-the-art single image denoising al-
gorithms when the noise is defined by spectral additive
vertical striping. Since this algorithm requires a well-defined
correlation structure of the noise, it is not necessarily specific
to NU and can likely be generalized to other additive noise
source patterns. Future work will investigate the computa-
tional complexity, corrective performance limitations, and
noise characterization limitations of the GSMPP algorithm.
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