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Abstract—Automatically identifying the locations and severities
of video artifacts is a difficult problem. We have developed
a general method for detecting local artifacts by learning
differences between distorted and pristine video frames. Our
model, which we call the Video Impairment Mapper (VID-MAP),
produces a full resolution map of artifact detection probabilities
based on comparisons of exitatory and inhibatory convolutional
responses. Validation on a large database shows that our
method outperforms the previous state-of-the-art. A software
release of VID-MAP that was trained to produce upscaling
and combing detection probability maps is available online:
http://live.ece.utexas.edu/research/quality/VIDMAP release.zip
for public use and evaluation.

Index Terms—VID-MAP; Artifacts; Natural Scene Statistics;
Upscaling Detection; Combing Detection; Source Inspection

I. INTRODUCTION

Detecting the locations and severities of distortion artifacts
in videos is a difficult task. Natural scene statistics models
have been observed to be highly sensitive to picture impair-
ments in general [1] [2], and have provided a logical path by
which specific impairment detectors can be designed. A dense
quality descriptor map would be quite valuable, not only to
content providers like Netflix and YouTube to assess their own
video collections, but also to Forensic investigators for finding
image forgeries and to digital camera makers.

Forensic scientists are interested in finding local signs
of tampering [3], where tampering might include cropping,
rotation, or scaling manipulations. However, simply detecting
the presence of an artifact in a video frame does not inform
an investigator regarding what caused the positive detection,
nor its location in the frame. Attempting to localize the
detection of artifacts by processing smaller frame patches may
significantly reduce detection accuracy.

A variety of useful upscaling detectors have been proposed
that measure local spatial covariance [4], periodicities [5], [6],
[7], [8], [9], [10], or frequency magnitude energy [11] [12].
Hybrid upscaling detectors that combine more than one of
these methods have also been explored [13] [14]. Recently, a
natural-scene based approach was developed that yields better
detection performance, by learning sets of sparse features that
are highly sensitive to upscaling artifacts [15].

Likewise, previously interlaced videos are sometimes en-
coded into a progressive video source, resulting in inefficient
distorted video encodes. Interlacing often introduces “comb-
ing” artifacts, which manifest as annoying jagged patterns that
are typically most visible along moving edges. Combing can
greatly reduce video quality when played out on progressive
displays.

The best existing interlacing detectors attempt to determine
the relative strengths of TFF and BFF field ordering of a video.
For example, the interlacing detector in FFmpeg [16] compares
the field orderings over multiple frames, detecting interlacing
when enough frames apparently exhibiting combing are de-
tected. Baylon [17] introduced an interlaced frame detector
that analyzes “zipper” points, which are patterns near edges
that most strongly exhibit combing artifacts. Although these
methods do not indicate exactly where combing is visible, they
have proven to be good predictors of combing.

Generalized artifact detection is related to anomaly detec-
tion and saliency. If the probability distribution of a video
signal is properly described, then anomalous patterns produce
deviations from this distribution [18]. A variety of state-of-the-
art picture quality prediction models [1] [2] like BRISQUE
[19], NIQE [20], FRIQUEE [21], and Video BLIINDS [22]
model the statistical regularities of bandpass natural images
and videos, then assess distortions that disturb these regulari-
ties.

Identifying both the locations and types of artifacts in a
video is difficult. Convolutional neural networks (CNNs) have
proven to be capable of jointly learning object classification
and localization tasks on images [23]. Until recently, these
models required ground truth bounding boxes or pixel-wise
segmentation masks to mark the locations of training objects
[24]. However, Bazzani et. al. recently showed that whole-
labeled images without any object location markers can be
fed to a network to train it to detect and localize objects [25].
These types of techniques have not been applied to distortion
artifact detection and localization in images.

Of course, for artifact detection, the problem of local
assessment is simplified, since a positive detection occurs if
any location in the entire image has distortion. By contrast,
negative samples contain no distorted locations. We have
developed a general method of detecting and mapping source
video artifacts, called the Video Impairment Detection Mapper
(VID-MAP), which uses globally applied distortion labels
to tune the detection of local artifacts. We train the model
on a CNN architecture to learn to detect and localize two
of the most common video artifacts: upscaling and interlace
combing. Through extensive validation experiments, we show
that VID-MAP not only exceeds the performances of prior
leading models, but it also yields a dense, full-resolution
detection probability map.

The layout of this paper is as follows. Section II describes
the proposed model in detail. Section IV presents two exper-
iments, where IV-A describes upscaling detection results and
IV-B describes combing detection results. Finally, Section V
presents concluding remarks.
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II. MODELS

A. Natural Scene Statistic Pre-Processing Model

A number of successful image quality assessment (IQA)
models process images to be quality-analyzed by a local band-
pass filtering operation followed by a local non-linear divisive
normalization [26], known as the Mean-Subtracted Contrast
Normalization (MSCN). This process tends to strongly Gaus-
sianize and decorrelate image pixels [26], [19], [20]. The
MSCN coefficients of image I are given by

Î(x) =
I(x)− µ(x)
σ(x) + C

where

µ(x) =
K∑

k=−K

L∑
l=−L

wk,lIk,l(x)

and

σ(x) =

√√√√ K∑
k=−K

L∑
l=−L

wk,l(Ik,l(x)− µ(x))2,

where K = L = 3, x are spatial coordinates, and w =
{wk,l|k = −K, · · · ,K, l = −L, · · · , L} is a 2D circularly-
symmetric, unit volume Gaussian weighting function sampled
out to 3 standard deviations. The parameter C = 1 avoids
saturation on low-contrast regions.

III. CONVOLUTIONAL DETECTION MAP NETWORK

A visual summary the VID-MAP artifact detection net-
work is provided in Fig. 1. Each input frame is transformed
perceptually into Q channels, selected here as µ(x), σ(x),
and MSCN transforms. These channels are passed through
the first layer, which includes both convolutional and bias
weights. The output of this layer is then passed through an
Exponential Linear Unit (ELU) [27] activation function. The
layer after this applies convolution and bias weights, followed
by another ELU non-linearity activation function, yielding two
outputs, RP and RN , which are treated as excitatory (positive)
and inhibatory (negative) response pairs. A final probability
prediction map is formed as

p(x) =
eRP (x)

eRP (x) + eRN (x) ,

where x are spatial coordinates.
The ground-truth labels provided while training the network

are binary. A given input image is either non-distorted or
distorted, which can be summarized using a global label.
Although many distortions do not affect an entire image or
video frame, a global label indicating that at least some subset
of the image locations are distorted can be extremely useful
when finding discriminating statistics between populations of
distorted and non-distorted image distributions.

Instead of backpropagating error at each response location
based from each global label, we instead only backpropagate
error through the most positively discriminative point x∗. By

Input Frame

Nx2xW2xW2 Convolution Layer

QxNxW1xW1 Convolution Layer

Channel Transformation

Fig. 1. VID-MAP convolutional network architecture. Dotted lines indicate
the portion of the network that is removed when creating full resolution artifact
detection maps. The channel transformation layer computes µ, σ, and MSCN
coefficient maps. Each input frame has a single binary label indicating whether
the frame is distorted or not. Exponential Linear Units [27] (not shown) are
present at the convolution layer outputs.

(a) Lanczos (b) Lanczos Map

(c) Nearest (d) Nearest Map

Fig. 2. Upscaling detection maps.

selecting this specific point, positively labeled input images are
reinforced. Negatively labeled input images help to minimize
false positive responses. The point x∗ is found by reformulat-
ing p(x) as

p(x) =
1

1 + e−A(x) ,

where A(x) = RP (x)−RN (x) is the discrimination distance.
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TABLE I
UPSCALING DETECTION F1 SCORES COMPUTED ON THE TEST SET.

UPSCALING TYPE INCLUDES “NOT UPSCALED,” “BILINEAR UPSCALING,”
“BICUBIC UPSCALING,” “LANCZOS UPSCALING,” AND “NEAREST

NEIGHBOR UPSCALING.”

Algorithm Bilinear Bicubic Lanczos Nearest
VID-MAP 0.9902 0.9916 0.9915 0.9932
Vázquez-Padı́n [29] 0.9736 0.9706 0.9683 0.9929
Goodall et al. [15] 0.9872 0.9885 0.9941 0.9977
BRISQUE [19] 0.9331 0.8988 0.8847 0.8847
Feng et al. [12] 0.8609 0.9162 0.9577 0.9099

Positive values of A indicate positive detection responses,
implying p(x) > 0.5. Thus, x∗ is determined by finding the
point x that maximizes A(x). By following this approach, the
locations of artifacts in the training data are not known a priori
or needed. This is in contrast to models that learn to compute
dense image segmentation maps [28], which use class labels
at each coordinate of the training image. The dotted lines in
Fig. 1 indicate the portion of the network that is used during
training. During testing, the Rp and RN responses are passed
through a softmax function to produce full resolution artifact
detection probability maps.

The only learned parameters in this network are the convolu-
tional and bias weights. The first layer contains N(Q∗W 2

1 +1)
free parameters, while the second layer learns 2(N ∗W 2

2 +1)
free parameters. Thus, the complexity of this “lightweight”
model is quite low as compared with recent deep convolutional
algorithms. The first layer filters learn local statistics, while the
second layer learns larger scale features. The efficiency of the
network is greatly enhanced by the perceptual preprocessing
that computes the MSCN inputs. While a much deeper network
might learn to replicate or resemble this “perceptual process,”
this would require additional computational expense. We used
the nominal values W1 = 5 and W2 = 11 in all experiments.

IV. RESULTS

We evaluated two types of problems using the same net-
work: the video upscaling (interpolation) detection and the
combing (interlacing artifact) detection problems.

A. Upscaling Detection

For the upscaling problem, we selected a total of 663,462
pristine patches from the Netflix video collection. We divided
these patches into non-overlapping training and testing sets of
nearly equal sizes that did not share any frame content. This
yielded 332,759 test patches and 330,703 training patches.
Positive samples of upscaling were produced using one of two
methods. In the first method, we downscaled pristine video
frames using a Lanczos-4 filter before upscaling by “Bilinear
Upscaling,” “Bicubic Upscaling,” “Lanczos Upscaling,” or
“Nearest Neighbor Upscaling.” In the second method, we
center-cropped from within the video frame, then upscaled
using one of the same four interpolation methods. Negative
samples were generated as both original pristine patches
and Lanczos-4 downscaled patches. All patches were of size
100x100. The VID-MAP network was trained using a batch

(a) Input Frame (b) Combing Map

Fig. 3. Example of a positive combing detection map.

size of 100, while ensuring that batches were class-balanced
at each iteration.

There are two important parameters of the model: the filter
sizes and the number of filters N . We chose to use 5x5 filters
in the first layer to be responsive to fine details, and 11x11
filters in the next layer able to summarize these features for
detection. We found that not many filters are needed to achieve
high accuracy on this detection task.

For visualization, we selected an image from the Berkeley
Segmentation Dataset, then upscaled it by 3x using two of the
four upscaling methods. A visual comparison of the probability
maps computed on the “Lanczos Upscaling” and “Nearest
Neighbor Upscaling” versions of that image are provided in
Fig. 2.

We numerically evaluated the performances of the models
using the F1 score, which is the harmonic mean of precision
and recall. Table I compares the performance of VID-MAP
to several other models, using p(x∗) as the final predicted
class label. One of the compared models is a general-purpose
blind IQA algorithm (BRISQUE). We included this high-
performance general model to determine whether, and to what
degree, the BRISQUE features contribute to the detection task.
As shown in the Table, BRISQUE did not perform nearly as
well as artifact-specific detectors, while remaining competitive
with Feng et. al. [12].

B. Combing Detection

We collected a training/validation dataset of 581 interlaced
videos, each containing 3 frames, which were determined to
contain visible combing artifacts. Specifically, a combed video
of three frames was so labelled if at least the middle frame of
the three contains visible combing when visually examined.
Another set of 581 non-interlaced videos was gathered as
negative samples. A negative sample was defined as one where
none of the three frames was deemed to exhibit any visible
combing. We also collected a separate content-distinct test
dataset containing 75 interlaced three-frame sequences and 75
undistorted three-frame sequences, where videos were selected
in the same manner.

Since combing artifacts generally manifest locally, we cre-
ated a complementary training dataset to increase the number
of samples. We manually selected regions of interest (ROIs)
that visually exhibited the combing artifact from among the
videos in the training set. Having selected the ROIs, we
extracted 100x100 patches centered at these points. Overall,
we collected 3,102 combed patches. To balance these combed
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TABLE II
F1 SCORES ACHIEVED BY THE COMPARED COMBING DETECTION MODELS

ON THE SET OF 150 VIDEO SEQUENCES.

Algorithm F1
VID-MAP 0.9868
BRISQUE [19] 0.8718
FFmpeg 0.9167
Baylon [17] 0.8811

patches, we also extracted a total of 25 from each negative
sample in the training set, yielding a total of (581 x 25) 14,525
negative patches.

For probability map visualization, we obtained a video “Bee
on Flower” from the internet archive [30], which contains
visible interlacing. A portion of this frame, along with the
corresponding aligned portion of the detection map, is shown
in Fig. 3. Detected combing artifacts are in white. Combing
artifacts are clearly detected on the bee, while the background,
which exhibits no visible combing artifacts, produces no false
detections. The complete video and detection map can be
viewed at [31].

Table II lists the obtained combing detection performance
results for multiple models. Our single-frame combing detec-
tion model clearly yields stand-out, state-of-the-art combing
detection performance.

V. CONCLUSION/FUTURE WORK

We suspect that the generality of our network model will
enable us to easily configure it for the detection of other
video artifacts, and indeed, we plan to apply it to an array
of other important video artifact detection problems. Since
a given distorted image often contains more than a single
location exhibiting an artifact, we plan to find ways to train
on these additional locations. For example, Singh and Yee
[32] proposed randomly hiding the most discriminative points
during training, to increase generality.

We also plan to introduce temporal information, e.g., by
extracting temporal perceptual features relevant to temporal
statistics, thereby enriching the dimensionality and diversity
of the VID-MAP model.
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