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Abstract—Natural scene statistics are well-studied in the con-
text of picture quality assessment and have been used in a
wide variety of top-performing picture quality prediction models.
Upscaling artifacts have been measured with regards to quality
impairment using these kinds of models. However, the assessment
and classification of subtle, less discriminable upscaling artifacts
remains an unsolved problem. The nearly imperceptible artifacts
pertaining to the extent and type of upscaling have not been
predicted using NSS-based models.

We develop an accurate model for predicting the upscaling
ratio applied to any natural image. By decomposing an input
image frame using an orthogonal filter bank and locally nor-
malizing the resulting responses, we show that the local energy
terms can be used to predict the upscaling ratio. In fact, a simple
linear regressor can be trained on these energy measurements,
hence no hyper-parameter tuning is necessary. We compare the
proposed model with other no-reference models using real-world
data contained in the Netflix collection.

Index Terms—Natural Scene Statistics; Upscaling prediction;
Upscaling detection

I. INTRODUCTION

Upscaling increases the pixel count of an image, most
commonly by using a bilinear, bicubic, or Lanczos-based inter-
polation technique. Upscaled pictures often contain a variety
of spatial distortions, including periodic artifacts, incidental
spatial correlations, and losses of high-frequency energy. Up-
scaled videos are difficult to detect, especially using human
eyes. Video streaming companies, like Netflix, obtain video
sources directly from video content producers or distributors,
who may introduce upscaling artifacts at one or more stages
of their pipeline. These artifacts will ultimately impact the
quality of experience of the streaming service end-users. Given
the desire to deliver best-of-class video quality, streaming
companies would like to be able to determine if video sources
have been upscaled upon receiving the sources.

Much prior work in upscaling detection has been forensic
research on detecting malign modifications and additions to
static images. By exploiting periodicities introduced by up-
scaling, Mahdian and Saic derive several spatial covariance
formulas and use radon transform analysis [[1] to produce a
predictor of both scaling and rotational transformations. Other
methods (2] [3] (4] [S] [6] [7] transform the input signal in
some way before applying the Discrete Fourier Transform
(DFT) to measure periodicities. A weakness of these DFT-
based methods is their ambiguity when handling upscaling
ratios outside the range of 1x-2x.

Another common approach to upscaling detection involves
measuring high-frequency energy loss. Both Katsavounidis
et al. 8] and Feng et al. [9] make frequency magnitude
measurements to determine the extent of this energy loss.

The training-free model introduced in [8] measures the “drop-
off” or “knee” point that upscaling introduces, which is
subsequently used to predict the upscaling ratio. Feng’s energy
density model extracts 19 energy ratios from the frequency
spectrum magnitude, which requires an additional prediction
step to obtain the upscaling ratio. The model by Vazquez-
Padin et al. [10] counts the number of nonzero singular
values in the SVD decomposition. One observed weakness of
these energy-based techniques is their unpredictable reaction
to varying content.

Combining periodicity analysis with DFT magnitude mea-
surements has been shown to reduce the weaknesses related to
each approach. Zhu et. al. [11] introduced a ranking scheme
using a Support Vector Classifier (SVC) to learn the degree
of relative upscaling between two image pairs. Phennig and
Kirchner [12] provided an in-depth analysis of both classes
of techniques, characterizing their weaknesses, and combining
the approaches to improve prediction accuracy.

Natural scene statistics have found use in full-reference up-
scaled picture quality prediction [13]]. However, no-reference
analysis of upscaling artifacts has not been studied in the
context of natural scene statistics models, which are the
basis of a variety of powerful perception-based picture qual-
ity predictors. No-reference quality prediction models such
as the Blind Referenceless Image Spatial QUality Evaluator
(BRISQUE) [14] and Naturalness Image Quality Evaluator
(NIQE) [15] use simple spatial-domain feature extraction
strategies that correlate well with human opinions of mul-
tiple picture distortion types. Here, we follow this path by
describing a new high-performance blind upscaling prediction
model that combines a novel pre-filtering technique with the
Mean-Subtracted Contrast-Normalized (MSCN) and “paired
product” computations developed in BRISQUE.

The layout of this paper is as follows. Section [[I] describes
the proposed model in detail. Section presents four ex-
periments, where and describe prediction of the
upscaling ratio while and describe classification
of the upscaling interpolation function. Finally, Section
presents concluding remarks.

II. PROPOSED NATURAL SCENE-BASED MODEL

As described in [17]], Principal Component Analysis (PCA),
when applied to images, can find an orthogonal basis of natural
image patches. We observed that these derived basis functions
change as natural image patches are upscaled, leading us to
explore how these changes can provide a useful measurement
on upscaling artifacts. Although different filter designs may be
applied, we opt for a simple approach learned directly from



Fig. 1. Exemplar pristine image selected from the Berkeley image segmen-
tation database [16].
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Fig. 2. Basis functions computed using PCA on 5x5 patches. All patches were
obtained on pristine images from the Berkeley image segmentation database
[16].

natural images, differing from [6] in that the filters used are
not specifically optimized for upscaled images.

In this work, we select a corpus of 500 natural Iumi-
nance images, obtained from the Berkeley image segmentation
database [[16]. Each image is split into overlapping patches of
size 5x5, from which we select 2000 random patches. Each
patch is multiplied by a 5x5 Gaussian mask sampled to 2
standard deviations and normalized to unit maximum value
to reduce energy at the patch boundaries. Accumulating the
weighted patches from each image yields a total of 1 million
patches. Given these 5x5 patches, PCA will produce at most
25 orthogonal basis functions, as depicted in Fig. 2} most of
which exhibit sinusoidal-like properties.

We use these 25 orthogonal basis functions for image pre-

filtering. Given an input luminance image, I, a total of 25 re-
sponse images were produced after filtering with each of these
basis functions, yielding R(Y) where f € {1,2,...,25}. Next,
each response image, R(/), undergoes divisive normahzatlon
to yield MSCN map RWY) for each f according to

7 (x) = BP0 — p(BD:x)
o(RU);x) + €
where
w(RY);x) Z Z wklR(f)
k=—Kl=—L
and
O-(R(f)7x) = Z Z wkl Rl(cl M(R(f),X))Q,

—Kl=—-L

where K = L = 5, x is the pixel location vector, and w =
{wg |k =-K, - ,K,l=—L,--- L} is a 2D circularly-
symmetric Gaussian weighting function sampled out to 3 stan-
dard deviations and normalized to unit volume. Throughout,
we fixed the saturation parameter € = 1x10™ 9,

The coefficients R(/) are the MSCN versions of the basis
filtered responses, like those obtained in BRISQUE. This
MSCN transform is inspired by retinal models of divisive
normalization in the human visual system. A total of 25 sample
standard deviation features, o,(,{ ), are computed on the 25 ﬁ(f )
maps. To obtain measurements of local spatial correlations
that may exist after normalization, “paired product” coefficient
maps are computed for each R(/) according to

HRW;i, ) = RO, H)RD (0,5 +1)
V(RD:i,5) = ROGHRD(+1,5)
DI(RWV;i,j) = ROGHRD(G+1,5+1)
D2(R¥;i,5) = RO HRD(+1,5—1)

yielding a total of 100 “paired product”
ple standard deviations pp(f ), ppg ), ppgf, and ppg) are
computed on H(R(!)), V(R()), DI(RW), and D2(RW)
respectively. Thus, 25 MSCN features, a,g{ ), and 100 local
correlation features, ppg), pp&}c ), ppgf , and ppg%, are com-
puted on each input image, for a total of 125 features.

To observe the behavior of the distributions from Wthh
our features are extracted, we plot the histograms of R
and V(R 6)) in Fig. 3 for the case of the test image in
Fig. I When upscahng by factors of 1x, 2x, and 3x, a
direct relationship appears between the histogram width and
upscaling factor, with higher upscaling resulting in narrower
histograms.

By measuring correlations between each feature and the
upscaling ratio, we can better understand the contribution of
each feature to a final prediction. Using the Berkeley dataset,

maps. The sam-
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Fig. 3. Histograms of MSCN and vertical paired product for basis filter 6 for different degrees of upscaling. These coefficients were computed using bicubic

upscaling of the image in Fig. |I|
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Fig. 4. Absolute value SROCC between each basis function and the
upscaling ratio. Images are upscaled using one of bilinear, bicubic, or Lanczos
interpolation.

we obtained 1500 images by upscaling the 500 images to
upscaling ratios in the continuous range [1,3] with bilinear,
bicubic, and Lanczos upscaling. Next, we observed the corre-
lations between the 125 features and the upscaling ratio. Figure
[ shows the absolute Spearman’s Rank-Order Correlation
Coefficients (SROCC) between features and upscaling ratio.

From Fig. [ the highest correlation occurs using Basis 6,
which measures responses to a cross-like shape. A low cor-
relation can be observed against the response to the low-pass
Basis 1, since the upscaling artifact perturbs high-frequencies.
Interestingly, the 5 features extracted from each basis have
similar correlations, except ppg?’).

III. EXPERIMENTS
A. General Prediction Performance

To compare performance amongst algorithms on a con-
trolled dataset, the Berkeley segmentation dataset was used
again. We upscaled 75% of the images in the dataset to
have upscaling ratios in the continuous range [1.25, 3], such
that each upscaled image was assigned a unique ratio. The
remaining 25% of the images were not upscaled. Each image

then recieved one of three levels of compression: None, 90%,
and 80% quality using the imagemagick [18] command line
utility, which implements JPEG compression. Introducing both
upscaling and compression allows for a more realistic test,
since delivery of professional content can include both lossless
and compressed images. Note that images in this dataset are
likely downscaled, minimizing CFA interpolation artifacts.

For the proposed model, predictions of the upscaling ratio
were made using both a linear regressor and a Support Vector
Regressor (SVR). We compared performance between these
regressors to show that a linear combination of the proposed
features yields a competitive predictor. Moreover, comparing
models using a linear regressor can provide a basis from which
to start tuning more complex models. For the alternative mod-
els, the suggested predictors were used. Note that Gallagher
directly estimated upscaling without need for a regressor.

The Berkeley dataset was randomized, then partitioned into
two sets, with 75% of the dataset for training and 25% for
testing. Models were evaluated on the testing data using the
Linear Correlation Coefficient (LCC) and Mean-Squared Error
(MSE). This process was repeated 1000 times, each time re-
randomizing the dataset order before partitioning. The median
results of this testing are reported in Table [I|

As may be seen, the proposed algorithm achieved top pre-
diction results overall, except for Lanczos interpolation. When
performance on all combined categories was measured, the
prediction performance of all models was found to suffer. This
could perhaps be overcome using a more complex machine
learning model, as exemplified by the results obtained using
the SVR.

B. Movie and TV Show Upscaling Prediction Performance

Since the Berkeley dataset was used when training the
pre-filters, there might be concern that performance on the
Berkeley dataset may be inflated owing to some unseen bias
(e.g., in the human selection of content). To address this
concern, we collected 801 distinct video frames from the
Netflix collection, from movie and TV show sequences that
were encoded at resolutions of 480p, 720p, 1080p, and 2160p
with extremely light compression. Next, each of these frames



TABLE I
MEDIAN PREDICTION PERFORMANCE ACROSS UPSCALING METHODS OVER 1000 TRAIN/TEST TRIALS ON “BERKELEY” DATASET. THE PRESENCE OF ’*’
INDICATES THAT ALL UPSCALING METHODS ARE PRESENT IN THE TESTING AND TRAINING SETS.

Model Bilinear Bicubic Lanczos *
LCC MSE LCC MSE LCC MSE LCC MSE
Gallagher 0.624 0.404 0.615 0.431 0.629 0.476 0.420 0.495
Pfennig and Kirchner (SVR) 0.910 0.079 0.860 0.132 0.813 0.188 0.849 0.139
BRISQUE (SVR) 0.956 0.034 0.975 0.021 0.977 0.019 0.966 0.029
Feng et al. (SVR) 0.973 0.023 0.982 0.015 0.994 0.005 0.968 0.027
Proposed (Linear) 0.965 0.030 0.972 0.024 0.981 0.017 0.960 0.035
Proposed (SVR) 0.981 0.016 0.985 0.013 0.988 0.012 0.979 0.018

TABLE II

MEDIAN PREDICTION PERFORMANCE ACROSS UPSCALING METHODS OVER 1000 TRAIN/TEST TRIALS ON “MOVIE AND TV SHOW” IMAGE DATASET.
THE PRESENCE OF ’*’ INDICATES THAT ALL UPSCALING METHODS ARE PRESENT IN THE TESTING AND TRAINING SETS.

Model Bilinear Bicubic Lanczos *
LCC MSE LCC MSE LCC MSE LCC MSE
Gallagher 0.267 0.477 0.029 0.674 -0.069 0.772 0.416 0.500
Pfennig and Kirchner (SVR) 0.745 0.199 0.460 0.471 0.285 0.623 0.430 0.467
BRISQUE (SVR) 0.952 0.041 0.930 0.058 0.941 0.050 0.928 0.060
Feng et al. (SVR) 0.796 0.161 0.877 0.099 0.935 0.055 0.795 0.161
Proposed (Linear) 0.970 0.025 0.961 0.033 0.969 0.026 0.951 0.042
Proposed (SVR) 0.979 0.018 0.978 0.019 0.981 0.016 0.969 0.026

TABLE III
MEDIAN CLASSIFICATION ACCURACY ACROSS UPSCALING METHODS
OVER 1000 TRAIN/TEST TRIALS ON “BERKELEY” DATASET. THE
PRESENCE OF ’*’ INDICATES THAT ALL UPSCALING METHODS ARE
PRESENT IN THE TESTING AND TRAINING SETS.

JPEG JPEG "
Model None 90% 80%
BRISQUE (SVC) 0.872 0.816 0.752 0.768
Feng et al. (SVC) 0.968 0.960 0.952 0.944
Proposed (LDA) 0.984 0.928 0.856 0.880
Proposed (SVC) 0.976 0.912 0.856 0.872
TABLE IV

MEDIAN CLASSIFICATION ACCURACY ACROSS UPSCALING METHODS
OVER 1000 TRAIN/TEST TRIALS ON “MOVIE AND TV SHOW” DATASET.

Model | Accuracy
BRISQUE (SVC) 0.776
Feng et al. (SVC) 0.672
Proposed (LDA) 0.935
Proposed (SVC) 0.915

was subjected to upscaling as before, using bilinear, bicubic,
or Lanczos upscaling. This time, JPEG compression was not
applied, since, in practice, source inspection of content is
applied only to high quality videos.

Using the same 75%/25% training/test split and 1000 trials,
we evaluated the prediction performance of each model, as
shown in Table [lIl The proposed algorithm delivered outstand-
ing performance on both the 3 datasets containing only a single
type of upscaling and on the dataset with multiple types of
upscaling. For this particular use case, the energy-based Feng
et al. features appear to have significant difficulty for both
bicubic and bilinear upscaling techniques.

C. General Classification Performance

Determining the interpolation method used is important for
both forensic artifact detection and for reporting source issues.
At the same time, study of model classification performance
can lead to further insights into the actual artifacts. For

instance, if classification accuracy of a model is high, then
information specific to each upscaling artifact is captured.

As listed in Table several models were used to classify
an image as having been upscaled using bilinear, bicubic,
or Lanczos interpolation. Decisions were made using Linear
Discriminant Analysis (LDA) and Support Vector Classifiers
(SVCs) for the same reasons that we used linear regression.
Again, a total of 1000 randomized 75%/25% train/test splits
were used, and the median results reported in Table Feng
et al. largely outperformed the other models.

D. Movie and TV Show Upscaling Classification Performance

We also measured classification performance on the Net-
flix video frames as shown in Table Here, Feng et
al. largely underperformed, indicating that measurements on
the frequency magnitude are more ambiguous for the given
content. When compared to Table more mis-classifications
occured for all models. The accuracies across all models are
low, implying that classifying the interpolation function is a
difficult problem.

IV. CONCLUSION/FUTURE WORK

We proposed a natural scene statistics-based method of
predicting the amount of upscaling that has been applied to a
picture. We show it to be an accurate and monotonic predictor
of upscaling, which can be trained using linear regressors. In
addition, the proposed model is a general spatial model that
is not necessarily limited to the upscaling artifact. Lastly, the
model has only the following tunable parameters: the patch
size, the Gaussian mask scale parameter for smoothing the
extracted basis filters (controlling bandwidth), a saturation
parameter €, and the Gaussian scale parameter for the x4 and o
computations. These values can be further explored in future
work. It may also be possible to create models that require no
training at all, following [15] and [19].



[1]

[2]

[3]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]
[19]

REFERENCES

B. Mahdian and S. Saic, “Blind authentication using periodic properties
of interpolation,” IEEE Transactions on Information Forensics and
Security, vol. 3, no. 3, pp. 529-538, 2008.

A. C. Gallagher, “Detection of linear and cubic interpolation in jpeg
compressed images,” Canadian Conference on Computer and Robot
Vision, pp. 65-72, 2005.

S. Prasad and K. Ramakrishnan, “On resampling detection and its
application to detect image tampering,” IEEE International Conference
on Multimedia and Expo, pp. 1325-1328, 2006.

S.-J. Ryu and H.-K. Lee, “Estimation of linear transformation by
analyzing the periodicity of interpolation,” Pattern Recognition Letters,
vol. 36, pp. 89-99, 2014.

A. C. Popescu and H. Farid, “Exposing digital forgeries by detecting
traces of resampling,” IEEE Transactions on Signal Processing, vol. 53,
no. 2, pp. 758-767, 2005.

D. Vazquez-Padin and F. Pérez-Gonzilez, “Prefilter design for forensic
resampling estimation,” IEEE International Workshop on Information
Forensics and Security, pp. 1-6, 2011.

M. Kirchner, “Fast and reliable resampling detection by spectral anal-
ysis of fixed linear predictor residue,” Proceedings of the 10th ACM
workshop on Multimedia and security, pp. 11-20, 2008.

1. Katsavounidis, A. Aaron, and D. Ronca, “Native resolution detection
of video sequences,” Society of Motion Picture & Television Engineers,
2015.

X. Feng, 1. J. Cox, and G. Doerr, “Normalized energy density-based
forensic detection of resampled images,” IEEE Transactions on Multi-
media, vol. 14, no. 3, pp. 536-545, 2012.

D. Vazquez-Padin, P. Comesafia, and F. Pérez-Gonzilez, “An SVD
approach to forensic image resampling detection,” EUSIPCO, pp. 2067—
2071, 2015.

N. Zhu, X. Gao, and C. Deng, “Image scaling factor estimation based
on normalized energy density and learning to rank,” IEEE International
Conference on Security, Pattern Analysis, and Cybernetics, pp. 197-202,
2014.

S. Pfennig and M. Kirchner, “Spectral methods to determine the exact
scaling factor of resampled digital images,” 5th International Symposium
on Communications Control and Signal Processing, pp. 1-6, 2012.

H. Yeganeh, M. Rostami, and Z. Wang, “Objective quality assessment of
interpolated natural images,” IEEE Transactions on Image Processing,
vol. 24, no. 11, pp. 4651-4663, 2015.

A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image
quality assessment in the spatial domain,” IEEE Transactions on Image
Processing, vol. 21, no. 12, pp. 4695-4708, 2012.

A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a completely
blind image quality analyzer,” IEEE Signal Processing Letters, vol. 20,
no. 3, pp. 209-212, 2013.

D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmenta-
tion algorithms and measuring ecological statistics,” Proceedings IEEE
International Conference on Computer Vision, vol. 2, pp. 416-423, 2001.
P. J. Hancock, R. J. Baddeley, and L. S. Smith, “The principal com-
ponents of natural images,” Network: Computation in Neural Systems,
vol. 3, no. 1, pp. 61-70, 1992.

“ImageMagick,” http://www.imagemagick.org/script/index.php,

A. Mittal, G. S. Muralidhar, J. Ghosh, and A. C. Bovik, “Blind image
quality assessment without human training using latent quality factors,”
IEEE Signal Processing Letters, vol. 19, no. 2, pp. 75-78, 2012.


http://www.imagemagick.org/script/index.php

	Introduction
	Proposed natural scene-based model
	Experiments
	General Prediction Performance
	Movie and TV Show Upscaling Prediction Performance
	General Classification Performance
	Movie and TV Show Upscaling Classification Performance

	Conclusion/Future Work
	References

