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Abstract 
The large-scale streaming of videos on demand, as exemplified by 
Netflix, Amazon, and YouTube, is a remarkable modern 
engineering achievement that embodies significant advances in 
such fields as video compression and communications, digital 
networks, high-speed computation, and display technologies. Yet 
even today, there remain significant challenges in providing the 
highest quality compressed digital video content to the consumer. 
We consider two of the main issues. The first is source inspection, 
whereby the intrinsic quality and possible impairments of source 
videos of interest are determined. The second is that of balancing 
the tradeoffs that can occur between video compression and 
rebuffering effects. We describe recent human studies that we 
have conducted on these problems and the types of automatic 
prediction models that we have been developing. 
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1. Introduction 
The large-scale streaming of videos on demand, e.g., by Netflix, 
Amazon, and YouTube, is a remarkable modern engineering 
achievement embodying significant advances in video compression 
and communications, digital networks, high-speed computation, and 
display technologies. Yet even today, there remain significant 
challenges in providing the highest quality compressed digital video 
content to the consumer. Here we discuss two of the main issues.  
The first is the problem of source inspection, whereby the intrinsic 
quality and possible impairments of source videos of interest are 
determined. This is of particular importance given the massive 
amount of legacy contents (e.g., older television programs and 
motion pictures) that are of low intrinsic quality and/or suffering 
from various artifacts arising from conversion from older formats to 
newer formats, such as upscaling, combing and aspect ratio 
conversion effects. We discuss methods that we have recently been 
developing to detect these effects automatically, which would be of 
great value for large-volume video streaming enterprises. 
The second problem we discuss is that of balancing the tradeoffs 
that can occur between video compression and rebuffering effects. 
While it is understood that excessive compression leading to 
perceptual artifacts is undesirable, and that the degree of perceptual 
annoyance arising from it can be predicted reasonably accurately, 
the perceptual effect of rebuffering events (video stalls from buffer 
emptying) on the overall human Quality of Experience (QoE), and 
how they balance against choices made regarding compression, 
have been less well studied. Creating models that predict the degree 
of annoyance arising from combined compression-rebuffering 
scenarios could lead to effective automatic rate control protocols 
that minimize the likelihood of rebuffering events, while 
maintaining acceptable levels of compressed picture quality. 
We also describe recent human studies that we have conducted on 
these problems and the types of automatic prediction models that 
we have been developing that we envision could lead to greatly 
enhanced solutions to both of these problems. 

2. Video Quality Assessment Scenarios 
The development of models that predict human judgments of 
motion picture or video quality is well-studied [1]-[3]. Algorithms 
that predict motion picture quality vary according to the relevant 
reference picture information, ranging from full-reference (FR) 
[3]-[6], to reduced-reference (RR) [7], to no-reference (NR) or 
blind [8]-[12]. NR algorithms, which do not use a reference video, 
instead rely on measuring the degree of statistical ‘naturalness’ 
that is lost by the introduction of distortion. 
Full-reference (FR) video quality assessment (VQA) models and 
algorithms have gained the greatest currency in digital television 
and cinematic applications by their application to rate monitoring 
and control problems, whereby broadcast, cable, satellite, or 
Internet VOD video encoding is perceptually monitored by the 
highly perceptually-relevant VQA algorithms, to either 
predetermine rate (compression level) or on the fly, in real time. 
The Emmy-winning Structural Similarity model (SSIM) [4] is 
probably the most successful example, of this, as it is deployed 
globally by broadcast, cable and satellite television providers to 
monitor and control picture quality, thereby affecting the viewing 
experiences of millions of viewers on a daily basis. Given the 
high percentage of video content occupying global (wireline as 
well as wireless) bandwidths, SSIM has a tremendous effect on 
global bandwidth allocation and consumption. A more recent 
model, the MOVIE algorithm, is also deployed globally [6]. 
However, FR VQA models are less useful at other points along 
the streaming video pipeline. This is depicted in Fig. 1, which 
divides the pipeline into Source, Transmission, and Client.  

 
Figure 1. Stages of video quality analysis for streaming video. 
The first (Source) stage involves the interesting and complex 
problem of video source inspection. A content provider, such as 
Netflix, acquires enormous amounts of content “sight unseen” 
from a large variety of sources. This content may be afflicted by 
any of a wide variety of distortions, such as compression artifacts, 
or by impairments arising from legacy processing, such as 
deinterlacing ‘comb’ effects, or by conversion errors arising from 
upscaling, aspect ratio conversion, 3-2 pulldown, and many other 
possibilities. Since no reference is generally available in any of 
these scenarios, then either human inspection (which is not 
feasible) or automatic blind VQA algorithms are required. 
The second (Transmission) stage is already ably handled using 
existing full-reference VQA models, as discussed above. 
The third (Client) stage presents the very difficult problem of 
handling new video impairments, variously called stalls or 
rebuffering events, that arise from of the interplay between 
available bandwidth at the receiver, the current video bitrate, and 
the status of the video buffer(s) in the client’s reception device(s). 
Video stalls or freezes are severe impairments that greatly affect a 
viewer’s visual Quality of Experience (QoE). 
We discuss the first and third stages in the following sections. 



 

 

3. Video Source Inspection 
Videos obtained from diverse sources may include legacy content 
such as old movies or television programs that were created at 
lower resolution, digitized from analog form, compressed using 
an older codec, or subjected to interlacing or other degradations. 
All of these, when displayed on a modern high resolution screen, 
can affect the perceptual quality of the presentation to some 
degree. Some artifacts, such as those arising from upscaling 
videos from low resolutions to higher ones, may be less noticeable 
to a casual observer, while others such as “comb” distortions in 
deinterlaced videos may be quite obvious. However, distorted 
source videos generally share one characteristic: there isn’t a 
high-quality reference video available to make quality 
comparisons against, hence NR VQA models are required. 
An important development in the field of vision science that has 
evolved over the past few decades are highly regular, practical 
statistical models of photographic images and video. It is now 
well established that the bandpass responses of picture luminances 
and chrominances over space and time obey simple and reliable 
statistical laws. In an empirical study of natural photographs, 
Rudermann [13] observed that when pictures have their local 
mean luminances removed, which is a sort of bandpass process, 
followed by a divisive normalization by local energy (luminance 
standard deviation) invariably have resulting first-order empirical 
distributions (histograms) that are approximately Gaussian and 
significantly decorrelated. This result has been observed on a 
wide variety of bandpass / normalized image signals produced 
using steerable pyramids, wavelets, Gabor filters, and so on [14]. 
This is a significant perceptual relevance to this observation, since 
the visual signal is subjected to both bandpass processing [15] and 
divisive normalization of the bandpass signals at various stages of 
the visual pathway, including retina, lateral geniculate nucleus 
(LGN) and primary cortex. Cortical models of this type have been 
used to drive machine vision algorithms from early on [16], [17]. 
The vision system appears to have evolved to adapt the regular 
statistics of pictures [18] to produce highly efficient, sparse low-
level image representations [19]. 
When images are visibly impaired, the impression of distortion is 
largely pre-attentive. Likewise, if a picture is impaired, this statistical 
regularity is destroyed, and when viewed, is strongly correlated with an 
annoying sense of distortion The statistical structure of distorted 
images is reflected in in the behavior of bandpass, normalized 
versions of them. This was first observed in [20] and used to 
create an FR IQA model called Visual Information Fidelity (VIF) 
which delivered top performance for several years, and which also 
explained, in part, the success of SSIM [21]. VIF has recently 
been introduced as the core FR IQA model for HDR video 
evaluation in the MPEG/ISO HDR Tools package [22]. The 
statistical regularity of photographs, and the loss of it by 
distortion, has also driven the development of top-performing NR 
IQA models [1], [8]-[12] which closely approach the performance 
of FR models [23], [24]. 
The simple and successful NSS-based NR IQA model BRISQUE 
[10] conducts quality prediction by computes mean-subtracted 
contrast normalized (MSCN) coefficients on images I : 
 
 
 

where C = 1 and where µ(i, j) and σ(i, j) are the local (gaussian-
windowed) mean and deviation of luminance, respectively: 
 
 
 
 
 
 
This process strongly spatially decorrelates and gaussianizes high-
quality picture data, but this is modified by distortion. Histograms 
of MSCN coefficients (and products of neighboring pairs of them) 
are fit to parametric generalized Gaussian densities, and the best-
fitting parameters are used as quality-predictive features. 
Distortions encountered in source inspection, such as upscaling artifacts, 
sometimes require a high degree of sensitivity to detect and assess. 
Towards this we improved the capabilities of BRISQUE by first pre-
filtering images to be assessed by an orthogonal filter bank computed 
over 1 million natural image patches using principle component 
analysis (PCA). This set of 25 5x5 filters is depicted in Fig. 2. 

Each of the 25 filtered images is 
subjected to MSCN processing, 
then the best parametric fits to 
the response histograms are 
found, yielding 125 parametric 
features [25]. 
As a simple visualization of 
the discrimination power of 
the PCA-BRISQUE features, 
Fig. 3 depicts boxplots of the 
sample variances computed 
on the MSCN maps and on 

the MSCN neighboring-product maps for all 25 PCA-filtered 
images, for different upscaling ratios (1x, 2x, and 3x). The plots 
indicate how these gross extracted energies become statistically 
well-separated when images are upscaled. Indeed, this simple 
energy measurement can be the basis of a very effective upscaling 
ratio predictor, although even better results are obtained by 
training on the 125 parametric NSS features. Indeed, even linear 
regression on the energies produces an effective predictor. 

    
Figure 3. Boxplot of mean variance of MSCN maps: (left) 

against upscaling ratio and (right) against combing. 
As we will show in the associated talk, the achieved prediction 
performance using the 125 NSS features is very high. Indeed, the 
accuracy obtained using a linear discriminant analyzer against 
multiple ratios of bilinear, bicubic, or Lanczos upscaling applied 
to frames obtained from a sizable Netflix database was very high 
(94%) as compared to the state-of-the-art model in [26], which 
reached only 67%. Even better result are obtained on combing 
artifacts, which tend to be more obvious. 



 

4. Predicting Client QoE of Streaming Video  
Given the volatile and increasingly crowded network conditions 
that feed videos to mobile devices, streaming content providers 
now deploy adaptive streaming strategies to mediate changing 
bandwidth conditions. At the client side, a viewer of streaming 
video may experience greatly reduced bandwidth, resulting in 
severe compression impairments, and/or video stalls/freezes 
(rebuffering events) from emptying of the client side buffer owing 
to a loss of adequate bandwidth. To study the perceptual effects of 
adaptive streaming on a client’s subjective Quality of Experience 
(QoE), we designed and developed the new LIVE-NFLX QoE 
Video Database, which will soon be publicly released. 
The new database uses a bandwidth usage equalization model, 
whereby it embodies various playout patterns that are allowed to 
use the same bandwidth and an equivalent buffer capacity. This 
allowed us to design directly comparable but highly diverse 
playout patterns, including constant encodes, adaptive rate drops, 
and mixtures of rate drops and rebuffering events. 
We gathered almost 5000 human QoE subjective scores on 14 
contents and 8 playout patterns. The 56 subjects viewed the 
impaired video contents on a mobile device. Longer video 
sequences (more appropriate for streaming applications) than are 
usual on VQA studies were used. The video content, either 
publicly available or provided by Netflix, is diverse and includes: 
action, drama, anime, and so on. We gathered both continuous 
and summary QoE ratings, which is enabling us to study both the 
temporal and overall (summary) effects of compression artifacts 
and rebuffering events on subject visual QoE, and how these types 
of impairments may be balanced against each other. 
We found that rebuffering is always obvious and leads to 
significant, sharp drops in perceived QoE, while compression 
artifacts span a range of annoyances, depending on the content 
and compression level. Notably, there exists a threshold below 
which rebuffering is preferred over encoding a complex content 
(e.g. a sequence rich in motion) at a low bitrate. 
An important observation was made with respect to recency 
effects: as expected, we found that summary QoE ratings were 
heavily biased by latest experiences. However, when a very 
negative QoE experience took place early on (such as a sequence 
of rebuffering events), it strongly impacted the reported endpoint 
QoE, i.e., subjects recalled them when making QoE judgments (a 
primacy effect). We also studied the temporal aspects of QoE, 
e.g., Fig. 4 shows the average subjective QoE reported during and 
following a sudden drop in bitrate. We have found that QoE 
recovery after a rate drop is a function of content complexity. 

Analysis of the subjective 
results allowed us to define 
several QoE features: the 
video quality (distortion) 
during normal playback, 
the memory effects after 
video impairments occur, 
and the effects of video 
stalls (e.g. stall number, 
location, and density). We 
use these to train regressors 
to effectively predict QoE 
retrospectively. By using 
efficient VQA models such 
as SSIM [4] and ST-RRED 
[7], along with rebuffering 

and memory-related features, we have created retrospective QoE 
prediction engines that outperform the recent state-of-the-art. For 
example, Fig. 5 shows a scatterplot of predicted QoE scores using 
one of our models against human mean opinion (summary MOS) 
QoE scores on the new LIVE-NFLX QoE Video Database. Aside 
from one outlier, the relationship appears to be near-linear and 
well clustered and distributed. The linear correlation against MOS 
that was attained by this model using SSIM [4] as the VQA 
component was 0.75. By comparison, applying only SSIM on the 
database (where no stalls occurred) yielded a correlation of 0.63.  

The choice of VQA 
model used to predict 
the perceived effects of 
distortions caused by 
video compression and 
their ultimate effect on 
subject video QoE was 
important. As expected, 
PSNR delivered poor 
results (SROCC below 
0.6) while SSIM [4] 
delivered good results. 
The best QoE prediction 
results were attained 

using the ST-RRED model [7], in line with other positive results 
obtained on this NSS-based algorithm. 

5. Future Work 
There are a number of exciting directions that we plan to pursue 
in the near future. In regards to source inspection, very often a 
content provider like Netflix may acquire content of a relatively 
poor quality but high intrinsic artistic merit, e.g., an old movie. 
The level of quality may reasonably be estimated using an NR 
VQA module. As with any content, decisions must be made with 
respect to bit rate, which further affects the quality of the video 
content, and which can be measured using an FR model. 
However, in this case the FR algorithm is relying on an imperfect 
reference, hence will yield perceptually less reliable results. 
This suggests the development of a new, two stage framework of 
“Conditional NR-FR VQA,”, whereby an NR source inspection is 
conducted on the reference I, which is then compressed to 
produce Ic. FR quality assessment of Ic is then conducted using I 
as a reference, with the result being conditioned on the predicted 
quality of I. This suggest a form of two-stage Bayesian prediction 
QFR{I, Ic | QNR[I] = q} which would entail modeling of the 
conditional distribution, or equivalently, of the joint distribution 
of the perceptual qualities of I and Ic.  
With regards to future work on streaming video QoE prediction, 
there are even more possibilities, of which perhaps the most 
obvious is to model and predict the continuous time variation of 
visual QoE [27]. In this way, QoE predictions could be used to 
adapt coding and buffer maintenance to the network conditions, 
and ultimately, to produce tools for controlling bandwidth usage. 
This could be approached as a probabilistic perceptual 
optimization, similar to SSIM-optimized image restoration [28] 
and compression / rate control [29], [30]. This idea of 
perceptually optimizing the video network, which is to say, most 
of the network, is a long-held desire that seems coming to fruition. 
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