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Abstract—A variety of powerful picture quality predictors
are available that rely on neuro-statistical models of distortion
perception. We extend these principles to video source inspection,
by coupling spatial divisive normalization with a filterbank tuned
for artifact detection, implemented in an augmented sparse
functional form. We call this method the Video Impairment
Detection by SParse Error CapTure (VID-SPECT). We configure
VID-SPECT to create state-of-the-art detectors of two kinds
of commonly encountered source video artifacts: upscaling and
combing.

The system detects upscaling, identifies upscaling type, and
predicts the native video resolution. It also detects combing
artifacts arising from interlacing. Our approach is simple,
highly generalizable, and yields better accuracy than competing
methods. A software release of VID-SPECT is available online:
http://live.ece.utexas.edu/research/quality/VIDSPECT release.zip
for public use and evaluation.

Index Terms—VID-SPECT; Natural Scene Statistics; Upscaling
prediction; Combing prediction; Interlace prediction; Sparsity;
Sparse Filterbanks; Source Inspection

I. INTRODUCTION

Source inspection is important for evaluating the quality of
any large video collection. For this inspection task, a series of
detectors may be used, where each detector is tuned to detect
a specific artifact. A logical theoretical foundation is provided
by natural scene statistics models, which are highly sensitive
to picture distortions [1]. Such tools would be quite valuable to
content providers such as Netflix, Hulu, and YouTube to assess
their video collections, and to evaluate videos they ingest.

Sometimes video contents are upscaled during post-
production, transcoding, or to fit larger formats. Upscaling
artifacts are produced by imputing missing information from
surrounding pixel data. This happens during color interpolation
(demosaicking) and when adapting images for higher resolu-
tion displays. Since data imputation does not add information,
and usually involves interpolation, upscaled images tend to
be smoother than their originals, with reduced high-frequency
energy. Upscaling a video results in lower dimensional data in
a higher dimensional space.

Combing occurs when videos are represented in an inter-
laced form, where whole video frames are sequenced as “top-
bottom” or “even-odd” frame pairs. Since the even-odd frame
pairs are slightly temporally displaced in time, when they
are reconstituted into whole frames, combing artifacts occur,
particularly in regions of motion.

Upscaling prediction algorithms exist for (a) finding evi-
dence of upscaling, (b) predicting native resolution, (c) classi-
fying upscaling by type, and (d) quantifying perceptible loss of

quality. Most existing methods do not fully cover this problem
space, instead being designed to solve (a) or (b).

For (a), typical approaches involve covariance or radon
transform analysis [2]. Periodicities introduced by upscaling
have been deeply studied [3]–[8]. For (c), frequency-based
approaches derive closed form predictions, but more general
energy falloff-based models aided by machine learning bet-
ter characterize differences amongst upscaling techniques [9]
[10]. Methods that rely upon the Discrete Fourier Transform
(DFT) typically lose prediction power when handling upscal-
ing ratios outside the range of 1x-2x [10] [11].

Combing detectors have utilized top-field-first (TFF) and
bottom-field-first (BFF) information across frames. For exam-
ple, the interlace detector in FFmpeg [12] determines where
the ratio TFF/BFF exceeds a threshold. Baylon [13] introduced
a “zipper filter” to detect differences between TFF and BFF
by analyzing moving edges. Each of these models requires
more than one frame to affect detection, although the combing
artifact is present in a single frame. Similar detectors are
provided in [14]–[16].

We address several subproblems of upscaling and comb-
ing detection by learning sets of filters from pre-processed
images using an augmented sparse functional. Our general
model, called the Video Impairment Detector by SParse Error
CapTure (VID-SPECT), computes predictions using averaged
responses of filter-based feature extractors. We show that its
detection performance significantly exceeds that of competi-
tive models.

Section II describes a preprocessing model related to natural
scene statistics and introduces the concept of developing sparse
features tuned for artifact detection. Section III describes
the upscaling artifact along with detection, classification, and
native resolution prediction methods. Section IV describes the
combing artifact detection method. Lastly, Section V presents
concluding remarks.

II. MODELS

A. Natural Scene Statistic Pre-Processing Model

A variety of successful Image Quality Assessment (IQA)
models utilize a normalizing transform, expressed as a local
bandpass filtering operation followed by a local non-linear
divisive normalization [17]. One such transform, known as
the Mean-Subtracted Contrast Normalized (MSCN) transform,
strongly Gaussianizes and decorrelates good quality photo-
graphic images [18]–[21]. This transform locally normalizes



spatial energy, similar to models of the retinal output signal,
i.e. the contrast signal. The MSCN transform is usually defined

Î(x) =
I(x)− µ(x)
σ(x) + C

where

µ(x) =
K∑

k=−K

L∑
l=−L

wk,lIk,l(x)

and

σ(x) =

√√√√ K∑
k=−K
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wk,l(Ik,l(x)− µ(x))2,

where K = L = 3, x is the pixel location vector, and w =
{wk,l|k = −K, · · · ,K, l = −L, · · · , L} is a 2D circularly-
symmetric Gaussian weighting function sampled out to 3 stan-
dard deviations and normalized to unit volume. The parameter
is commonly fixed at C = 1 to avoid saturating in low-contrast
regions.

B. Sparse Functional Modeling

The entropy-reducing processing performed in mammalian
visual cortex, which is fed by the retinal signal, has been
hypothesized to have adapted optimally to efficiently encode
images of natural scenes [22]. We are interested in developing
similar optimal encoding schemes for specific visual detection
tasks. Just as visual cortex can be modeled as an over-
complete filterbank, we consider the possibility of learning
embedded patterns in MSCN transformed images using an
automatic feature extraction technique that utilizes such a
learned filterbank. Towards this purpose, sparse dictionary
learning can be used to discover those atoms which underlie
pristine and distorted natural images.

Sparsity applied on image patches has shown utility in
general recognition and denoising problems. The patch-based
sparsity functional, which seeks to minimize the difference
between batch of MSCN-trasformed patches S and a small
number of weighted basis functions φ is defined by

argmin
X,φ
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+ λ ‖X‖1 (1)

subject to
‖φk‖2 = 1, X ≥ 0.

Note that each basis function in φ is constrained to share
the same dimension as the input MSCN patch Si. Sparsity
is achieved by penalizing the absolute sum of coding matrix
X using an Lagrangian multiplier λ. This type of penalization
of the coding matrix is known as the `1 norm.

Since this functional is unsupervised, it does not fully
exploit additional information (such as labels). To overcome
this, binary labels that indicate artifact presence may be added

to the functional. The updated functional with labels is given
by

argmin
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where the first term penalizes the reconstruction error and
the second penalizes non-discriminative codes, y is a matrix
of binary class labels, and ‖X‖1 is the sparsity term. The
codes in X are constrained non-negative to enforce an additive
relationship among unit-normalized dictionary elements. The
predicted class label vector pi is computed using a linear
projection followed by softmax normalization, using

pc =
e
∑
|SWcφc|+bc∑

j e
∑
|SWjφj |+bj

to project correlations between filters and the input signal
onto probability estimates. The diagonal weight matrix Wc is
constrained nonnegative to enforce correlation between signal
and φ while reweighing the contributions of each correlation
to the overall prediction of class c. Finally, b is the class bias.
The term SWcφ measures correlation of reweighted dictionary
elements Wcφ with the data S. The absolute value of this
correlation is analogous to an activation function in neural
networks and is maximized when φ correlates with the data
in the assigned class. Values in Wc can be set to 0 to disable
elements in φ for a class.

This approach to incorporating labels into the sparse func-
tional is closest to the work of Mairal et. al. [23], but unlike
Mairal et. al., there is no direct dependence between the sparse
coding problem and the classification problem. As a result, the
dictionary learned by minimizing Equation 2 will recover the
same codes found by minimizing Equation 1 with the same
dictionary. We find that enforcing independence between the
code update step and the dictionary update step is necessary
for the artifact detection task.

C. VID-SPECT Model

In order to expand from patch-based to whole-frame anal-
ysis of artifacts, we consider the sparse filterbanks learned by
appropriate minimization of equations 1 and 2 to be tuned
for detecting artifacts and predicting artifact intensity. We
developed the VID-SPECT model which uses this filterbank
as a set of feature extractors. The processing stages of VID-
SPECT are: computing the MSCN transform on the input im-
age, using a precomputed filterbank designed by appropriately
minimizing equation 2, convolving the MSCN transformed
image by that filterbank, averaging responses, then mapping
those averages to class labels, as depicted in Fig. 1. As we
show, VID-SPECT performs well across multiple tasks.
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Fig. 1. Processing stages of VID-SPECT used to compute an artifact
prediction given any input image and trained sparse filterbank.

III. UPSCALING PROBLEMS

To study how natural video frames are perturbed by upscal-
ing, we learned a set of sparse discriminative filters using both
upscaled and non-upscaled video frames.

We studied four common upscaling interpolation schemes:
bilinear, bicubic, Lanczos, and nearest neighbor upscaling. We
collected a large dataset of more than 100,000 high quality
Netflix video frames. We upscaled each frame using one of the
interpolation functions. The upscaling ratios were randomly
applied in the range [1.25, 3.0], since we wanted to include the
practical extreme case where 720p film is upscaled to 2160p.

To generalize our upscaling analysis, we mixed two philoso-
phies. First, we center cropped from within each video frame,
then upscaled to the size of the frame, ensuring that pristine
frame data was only perturbed by the upscaling artifact. In
the alternative approach, we first downscaled the frame using
a Lanczos-4 filter so that upscaling would maintain the original
frame size, ensuring the content is held fixed across upscaling
factors. We also consider frames downscaled using Lanczos-4
as a part of our non-upscaled frame data. These two scenarios
were selected to alleviate concerns regarding scale in film
content while also attempting to maintain upscaled film grain
noise artifacts.

We then transformed frames using MSCN. For developing
φ, we extracted several 25x25 patches from each frame, and
used a Gaussian weighting function to suppress patch edges.
This size of 25x25 was determined based on the maximum
interpolation kernel width, which happens to be Lanczos
kernel with upscaling factor of 3. This size also constrains the
size of each element in φ. When evaluating VID-SPECT, we
used patches of size 100x100. A total of 100,000 patches were
used for training, and 60,000 patches were used for testing.

To explore the temporal aspect of videos, separate datasets
for frame-differences were created using the same method-
ology. Two consecutive video frames are differenced then

processed using MSCN before extracting patches. In this way,
we directly compare the difference in prediction performance
between single-frame and frame-difference detectors.

Towards understanding how well the learned system can
characterize upscaling artifacts, we devised three tasks involv-
ing only the use of VID-SPECT features. The first task was
to discriminate between upscaled and non-upscaled frames.
The second involved identifying the interpolation scheme
used from among non-upscaled (pristine), bilinear, bicubic,
Lanczos, and nearest neighbor upscaling. The last task was to
predict native resolution of both pristine and upscaled images.

A. Detection

Optimal parameters for the machine learning model in VID-
SPECT are chosen by maximizing the median performance
of 5-fold cross validation using just the training subset. To
assess the binary classification performance, we measured the
F1 score and the Matthews Correlation Coefficient (MCC).
To assess regression performance, we measured Spearman’s
Rank-Ordered correlation Coefficient (SRCC) for monotonic-
ity and Mean-Squared Error (MSE) for point-wise accuracy.

We evaluated VIDSPECT by choosing parameters for each
model that reasonably spanned the parameter space for α
and λ. We considered α ∈ {0.0, 0.1, 1.0, 10.0} and λ ∈
{0.1, 0.5, 1.0}. In each task, we constrained the number of
filters in φ to be 100. Table I lists the performance results of
VID-SPECT on the upscaling detection task. We tested both
detection performance when only one interpolation method
was present in the upscaled class, and also when all interpola-
tion methods were present in the upscaled class. We also tested
a version of VID-SPECT that uses frame differences rather
than single frames, which we call VID-SPECT-D. From these
results, we conclude that supervised single-frame VID-SPECT
yielded the best upscaling detector.

B. Method Discrimination

The filters for the discrimination problem are provided
in Fig. 2. These basis functions all exhibit directional high
frequency patterns, which intuitively follows since upscaling
artifacts mostly affect high-frequencies. The progression in
interpolation order can be clearly seen across Bilinear, Bicubic,
and Lanczos basis classes. In other words, bilinear basis func-
tions exhibit patterns with 1-2 cycles, bicubic basis functions
exhibit 2-3 cycles, and Lanczos exhibits at least two cycles,
all at different orientations. Nearest neighbor filters exhibit
high-frequencies along the cardinal directions.

Table II compares performance across methods for the
upscaling type discrimination task. Supervised VID-SPECT
performed best compared against other models.

C. Native Resolution Prediction

Table III lists native resolution prediction performances
across algorithms. Single-frame inputs to VID-SPECT deliv-
ered much better predictions of native resolution than the other
models.



TABLE I
UPSCALING DETECTION PERFORMANCE ON VIDEO FRAME PATCHES WHERE UPSCALING TYPE INCLUDES “NOT UPSCALED,” “BILINEAR UPSCALING,”

“BICUBIC UPSCALING,” “LANCZOS UPSCALING,” AND “NEAREST NEIGHBOR UPSCALING.”

Algorithm Bilinear Bicubic Lanczos Nearest Neighbor All
F1 MCC F1 MCC F1 MCC F1 MCC F1 MCC

VID-SPECT (α = 1.0) 0.9950 0.9899 0.9949 0.9897 0.9952 0.9904 0.9923 0.9845 0.9909 0.9818
VID-SPECT (α = 0.0) 0.9715 0.9427 0.9843 0.9686 0.9931 0.9862 0.9810 0.9620 0.9689 0.9379
VID-SPECT-D (α = 10.0) 0.9884 0.9767 0.9909 0.9819 0.9934 0.9868 0.9914 0.9827 0.9875 0.9750
VID-SPECT-D (α = 0.0) 0.9860 0.9719 0.9894 0.9788 0.9926 0.9853 0.9884 0.9768 0.9847 0.9693
Goodall et al. [24] 0.9872 0.9744 0.9885 0.9769 0.9941 0.9882 0.9977 0.9953 0.9893 0.9786
BRISQUE [19] 0.9331 0.8650 0.8988 0.7949 0.8847 0.7657 0.8847 0.7639 0.8730 0.7417
Vázquez-Padı́n et al. [25] 0.9736 0.9469 0.9706 0.9409 0.9683 0.9361 0.9929 0.9858 0.9729 0.9454
Feng et al. [10] 0.8609 0.7207 0.9162 0.8303 0.9577 0.9155 0.9099 0.8150 0.8555 0.7206

(a) Bilinear (b) Bicubic (c) Lanczos (d) Neighbor

Fig. 2. Dictionaries learned for each evidence category, when assigning 10
filters to each. Filter size is held constant at 25x25.

TABLE II
UPSCALING TYPE DISCRIMINATION PERFORMANCE ON VIDEO FRAME

PATCHES WHEN CLASSIFYING UPSCALING TYPE AMONG “NOT
UPSCALED,” “BILINEAR UPSCALING,” “BICUBIC UPSCALING,”

“LANCZOS UPSCALING,” AND “NEAREST NEIGHBOR UPSCALING.”
REPORTED VALUES ARE F1-MACRO SCORES, SINCE THE CLASSES ARE

WELL-BALANCED.

Algorithm F1-Macro
VID-SPECT (α = 1.0) 0.9225
VID-SPECT (α = 0.0) 0.9206
VID-SPECT-D (α = 10.0) 0.8965
VID-SPECT-D (α = 0.0) 0.8838
Goodall et al. [24] 0.8753
BRISQUE [19] 0.4921
Feng et al. [10] 0.7519

IV. INTERLACE DETECTION

Combing artifacts can be much more visually obvious
than upscaling effects when viewed on progressive displays.
The artifact often becomes increasingly obvious on scenes
containing rapid motion.

We collected a training/validation dataset of 581 interlaced
combed sequences of 3 frames. A combed sequence is one
where the middle frame exhibits visible combing (the others
may also). To balance these positive samples, an equally
sized set of 581 non-interlaced video sequences was gathered
as negative examples. A negative sequence is one where
no frames exhibit visible combing. We collected a separate

TABLE III
NATIVE RESOLUTION PREDICTION ON PATCHES THAT WERE NOT

UPSCALED, AND UPSCALED USING “BILINEAR UPSCALING,” “BICUBIC
UPSCALING,” “LANCZOS UPSCALING,” AND “NEAREST NEIGHBOR

UPSCALING” WITH UPSCALING RATIOS CHOSEN FROM THE RANGE 1.25X
TO 3X.

Algorithm MSE SRCC
VID-SPECT (α = 0.1) 26.28 0.9445
VID-SPECT (α = 0.0) 27.20 0.9353
VID-SPECT-D (α = 10.0) 37.85 0.9250
VID-SPECT-D (α = 0.0) 46.13 0.9179
Goodall et al. [24] 70.70 0.9055
BRISQUE [19] 282.86 0.7663
Vázquez-Padı́n et al. [25] 227.66 0.8591
Feng et al. [10] 238.02 0.8048
Pfennig and Kirchner [11] 505.33 0.6184

(a) Positive evidence (b) Negative evidence

Fig. 3. Sparse filters learned for interlacing.

content-distinct test dataset containing 75 interlaced three-
frame sequences and 75 undistorted three-frame sequences.

Figure 3 depicts evidence for and against the interlacing
artifact. In Fig. 3a, the zigzag pattern of combing is apparent.
In Fig. 3b, low-frequencies and vertical edges dominate.

We evaluated two existing state-of-the-art algorithms. The
first is the FFmpeg ’idet’ detector, which requires 3 frames.
For progressive video, it assumes that the row in the current
frame can be interpolated using two rows in either the previous
or next frame. For interlaced video, it assumes the interpolated
row will not match the corresponding row in the previous or
next frames. A prediction is generated by applying threshold
T1 on these two measurements.



TABLE IV
COMBING DETECTION RESULTS COMPUTED ON THE TEST SET OF 150

VIDEO SEQUENCES.

Algorithm F1 MCC
VID-SPECT (α = 1.0) 0.9730 0.9470
VID-SPECT (α = 0.0) 0.9730 0.9470
VID-SPECT-D (α = 10.0) 0.9306 0.8695
VID-SPECT-D (α = 0.0) 0.9241 0.8552
BRISQUE [19] 0.8718 0.7357
FFmpeg 0.9167 0.8427
Baylon [13] 0.8811 0.7761

The second algorithm was developed to determine field
order on known combed sequences [13]. We modified it to
provide detection predictions. It counts the number of zipper
artifacts T0 of length Z in the top-field and the bottom field
between two frames. If the difference between these counts
exceeds a threshold T1, then the two frames are labeled
as combed. Thus, this algorithm requires two frames for
detection.

Table IV lists the F1 and MCC performances for the selected
algorithms. The VID-SPECT detector yielded higher accuracy
than the compared detectors. The BRISQUE quality model
performed almost as well as Baylon’s detector, despite not
being designed for this artifact. We determined thresholds in
the FFmpeg ’idet’ detector and in Baylon’s detector using
5-fold cross validation. The optimal threshold parameter for
FFmpeg’s detector was T1 = 1.0551, and the optimal param-
eters for Baylon’s detector were T0 = 75, T1 = 1.113, and
Z = 10.

V. CONCLUSION/FUTURE WORK

We proposed a new, general-purpose video source inspec-
tion framework called VID-SPECT, which uses sparse basis
functions computed on MSCN coefficients as feature extrac-
tors to detect two types of source artifacts, upscaling and
combing. We recommend that VID-SPECT be configured to
use basis functions derived from a supervised functional to
find best discriminative filters. Given the effectiveness of VID-
SPECT on upscaling and combing problems, video engineers
should be able to extend this method to solve a wider array
of artifact detection problems, from subtle artifacts to more
obvious artifacts.
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