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Fig. 1. Foveated reconstruction with DeepFovea. Left to right: (1) sparse foveated video frame (gaze in the upper right) with 10% of pixels; (2) a frame

reconstructed from it with our reconstruction method; and (3) full resolution reference. Our method in-hallucinates missing details based on the spatial and

temporal context provided by the stream of sparse pixels. It achieves 14x compression on RGB video with no significant degradation in perceived quality.

Zoom-ins show the 0
◦
foveal and 30

◦
periphery regions with different pixel densities. Note it is impossible to assess peripheral quality with your foveal vision.

In order to provide an immersive visual experience, modern displays require
head mounting, high image resolution, low latency, as well as high refresh
rate. This poses a challenging computational problem. On the other hand, the
human visual system can consume only a tiny fraction of this video stream
due to the drastic acuity loss in the peripheral vision. Foveated rendering and
compression can save computations by reducing the image quality in the pe-
ripheral vision. However, this can cause noticeable artifacts in the periphery,
or, if done conservatively, would provide only modest savings. In this work,
we explore a novel foveated reconstruction method that employs the recent
advances in generative adversarial neural networks. We reconstruct a plau-
sible peripheral video from a small fraction of pixels provided every frame.
The reconstruction is done by finding the closest matching video to this
sparse input stream of pixels on the learned manifold of natural videos. Our
method is more efficient than the state-of-the-art foveated rendering, while
providing the visual experience with no noticeable quality degradation. We
conducted a user study to validate our reconstruction method and compare
it against existing foveated rendering and video compression techniques.
Our method is fast enough to drive gaze-contingent head-mounted displays
in real time on modern hardware. We plan to publish the trained network to
establish a new quality bar for foveated rendering and compression as well
as encourage follow-up research.
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1 INTRODUCTION

Despite tremendous advances in consumer hardware for real-time
rendering and video compression, the demand for high-fidelity vi-
suals continues to grow. Recent advances in head-mounted displays
allow us to achieve a new level of immersion by delivering the
imagery straight to the eyes. However, such displays also require
a significantly higher resolution and refresh rate to provide high
quality immersion and good visual experience across the entire field
of view. Rendering this high-quality content is challenging even on
current high-end desktop systems.

On the other hand, the human eye has a very heterogeneous res-
olution density. It is able to resolve objects as small as 1 arcminute
in the fovea, the center 5.2◦ region of the retina, and experiences a
rapid acuity falloff outside the fovea toward the periphery [Curcio
et al. 1990]. Fovea covers roughly 0.8% of pixels on a regular dis-
play under common viewing conditions [Guenter et al. 2012] and
around 4% of pixels on consumer virtual reality (VR) headsets [Pat-
ney et al. 2016], such as HTC Vive and Oculus Rift. With the recent
developments in gaze-contingent VR displays, such as the recently
announced HTC Vive Pro Eye, it is also possible to estimate the
user gaze in real time and perform gaze-contingent rendering and
compression. This provides an important opportunity to optimize
the amount of computation required to drive such displays, enabling
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higher quality visuals, larger resolution displays, and facilitating
the miniaturization into mobile and wearable headsets, ultimately
improving immersion and visual experience.

The foveation effect of human vision has been studied in various
fields, including foveated video compression [Lee et al. 2001], and
more recently foveated rendering [Guenter et al. 2012], achieving
50–70% in savings [Weier et al. 2017]. While peripheral compression
has significant potential, one has to be careful about the artifacts
that can be detected in the periphery, such as the loss of contrast
with details (tunnel vision effect) and flicker [Patney et al. 2016], to
which peripheral vision is especially sensitive [Rovamo et al. 1984].
Rendering can also employ a sparse foveated pattern [Stengel et al.
2016; Weier et al. 2016], which becomes a practical option with the
recent advances in real-time ray tracing hardware, such as NVIDIA
RTX, and fine resolution control for rasterization.
This motivated us to use a stochastically foveated video as an

input, which is general enough to cover a wide variety of use cases.
For example, this input is suitable both for foveated rendering and
for foveated video compression. We use a sparse video stream with
only a small fraction of pixels stochastically distributed per frame.
For regular videos, we use a simple compressor that stochastically
drops pixels in the periphery according to human visual acuity. This
approach alsomakes the compressor compatible withmany foveated
rendering methods. Moreover, a video-producing module can be
treated as a black box, compressing video streams produced from a
variety of existing applications, e.g., for untethered or cloud-based
VR gaming.

Our main contribution is the peripheral reconstruction method.
DeepFovea starts with a sparse stream of color pixel values as an
input. Given this sparse stream, we formulate the peripheral re-
construction problem as a projection-to-manifold problem, where
the goal is to find the closest natural video that corresponds to the
sparse foveated input on the manifold of all natural videos. This
approach is similar to the internal model of the human visual sys-
tem that infers content in the periphery using the available sparse
and aliased peripheral information [Geisler 2008]. We employ this
relation by using the recent advances in the adversarial training of
generative video networks to train a reconstruction network to infer
peripheral details based on the learned manifold of natural videos.
This manifold also allows to infer the spatio-temporal semantic con-
text based on an input video stream of sparse pixels. This allows us
to achieve a significant reduction in the amount of required content
without degrading the perceived quality in the peripheral vision.

At a glance, the contributions of our work are:

• A novel neural reconstruction that can inpaint details in the
fovea and in-hallucinate temporally stable peripheral video
content.

• A universal method that supports a video content produced
by a black-box method.

• Over 14x reduction for foveated rendering without noticeable
quality degradation.

• Real-time and low-latency reconstruction performance to
drive gaze-contingent displays.

• Gaze-contingent user studies to analyze the quality and the
detectability.

• Publishing the method as a baseline in foveated compression
for the follow-up work.

In the remainder of the paper, Section 2 provides background on
human perception and the potential of foveated compression, dis-
cusses existing foveated rendering and video compression methods
and suitable quality metrics, and provides an overview of simi-
lar methods and recent generative methods in machine learning.
Section 3 discusses our initial setting, design goals, and input as-
sumptions. Section 4 describes the main reconstruction algorithm,
network design, and training methodology we use. To evaluate the
quality, we conduct a user study described in Section 5. The results,
implementation details, and discussion are provided in Section 6.

2 PREVIOUS WORK

2.1 Background on Visual Perception

The ultimate receiver of the visual signal is the human eye. Its
physiological structure determines how that visual signal is encoded
for processing at subsequent stages of the visual system. The number
of photoreceptors in the eye rapidly decreases from the fovea to the
periphery [Curcio et al. 1990]. This fundamentally couples spatial
sampling rate to eccentricity, the angular distance from the fovea. As
sampling rate decreases with increasing eccentricity, our ability to
perceive fine and mid-level details also decreases. Despite this loss
in spatial resolution, temporal sensitivity remains roughly constant
across all eccentricities [Rovamo et al. 1984].

When a video is presented, the light is captured by the 4.6 million
cone photoreceptors [Curcio et al. 1990]. These photoreceptors
feed subsequent retinal layers that encode this data for the midget
ganglion cells which provide the pathway out of the eye. Thus,
visual acuity, the ability to perceive spatial detail at or below a
spatial frequency, is limited by the density of these midget cells.
The Contrast Sensitivity Function (CSF) [Kelly 1984; Robson 1966]
models this loss in perceptual contrast sensitivity of a stimulus as a
function of its spatiotemporal frequency. Geisler and Perry [1998]
provide a formulation of spatial frequency sensitivity in terms of
eccentricity. Figure 2 relates cone and midget cell densities to visual
acuity as a function of an angular distance from the fovea. The
reduction in cell density from fovea to periphery (0◦– 40◦) is on
the order of 30x [Dacey and Petersen 1992], providing a guide for
reducing spatial details according to retinal physiology.

When designing a model based on this reduction, the spatiotem-
poral sensitivity of the eye must be carefully considered. Undersam-
pling spatial details every frame without applying an appropriate
pre-filter leads to aliasing-induced flicker as objects traverse points
in the visual field. Neglecting spatiotemporal frequencies introduces
another source of flicker as well as “tunnel vision” phenomena. De-
signing a model that respects these sensitivities and avoids flicker
across the entire visual field is challenging.

2.2 Foveated and Perceptual Rendering

Delivering high quality content to each location in a head-mounted
display (HMD) is computationally expensive. To save computation,
peripheral compression becomes increasingly important for both
rendered and captured video content. However, foveated rendering
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Fig. 2. Dropoff in acuity (green, cycles per degree) vs degrees eccentric-

ity [Geisler and Perry 1998]; cone cell density [Curcio et al. 1990] and

midget cell density [Bradley et al. 2014] distributions (blue).

can produce the aforementioned visual artifacts. Simply downsam-
pling with eccentricity introduces aliasing and jitter. These phe-
nomena encumber the design of an efficient and visually lossless
foveated rendering.
The seminal initial work on foveated rendering [Guenter et al.

2012] addresses these problems by computing three gaze-centered
concentric rings at progressively lower resolution. The resolution
falloff and the size and the placement of the rings are chosen accord-
ing to the perceptual detectability threshold [Geisler and Perry 1998].
To suppress the flicker in the periphery, jittering and temporal fil-
tering are applied. Recent notable follow-up work performs sparser
rendering in the periphery with either stochastic sampling and in-
painting [Stengel et al. 2016] or using reduction of shading rate [He
et al. 2014] followed by advanced image filtering [Patney et al. 2016].
Sun et. al [Sun et al. 2017] proposed a method for both foveation
as well as accommodation for light field displays using a sparsely
and adaptively sampled light field. In contrast, our work does not
require rendered content because it takes color-only samples as in-
put and is focused on foveation-only reconstruction. Vlachos [2015]
proposed to use a checkerboard pattern to skip 2 × 2 pixel blocks to
sparsify rendering in the periphery followed by a simple inpainting
algorithm for hole filling. Foveated ray tracing [Weier et al. 2016]
combines reprojection with temporal filtering to avoid artifacts.
We refer an interested reader to the recent survey on perceptual
rendering [Weier et al. 2017].
In contrast to most foveated rendering methods, we design a

foveated reconstruction method that does not require any knowl-
edge about how the image was generated, such as rendering-specific
attributes, or a decomposition into visibility and shading. Instead,
our method is inspired by the compression and inference in human
visual system that is crafted to rely on natural video statistics. This
allows us to design a single method for both synthetic content as
well as regular videos and images. To avoid perceptual artifacts in
the periphery, we rely on in-hallucinating the video content based
on the learned statistics of natural videos to achieve high quality
foveated compression.

2.3 Foveated Video Compression

For decades, video compression standards have emerged from in-
cremental changes to the hybrid video encoder model. H.264, H.265
(HEVC), VP9, and AV-1 are the most popular standards used by me-
dia platforms. Unfortunately, these standards do not apply directly
to foveated video compression. Attempts at applying various mod-
ifications to the input signal to exploit these encoder approaches

include [Lee et al. 2001; Wang et al. 2001, 2003]. The recent work in
applying convolutional neural networks (CNNs) to compression has
yielded Wave One [Rippel et al. 2018], a highly efficient compres-
sion method that exploits non-constrained latent space for better
compression.
360◦ video formats are becoming increasingly popular with the

advent of fisheye cameras and HMDs. By exploiting both eye and
head tracking, only the viewed portion of the entire scene needs to
be decoded at full resolution. A fully functioning real-time foveated
compression system has the potential to impact how 360◦ video
formats are evolving, which is an active area of discussion within
the Joint Video Exploration Team (JVET) [Ye et al. 2017].

2.4 Image and Video Error Metrics

Image and video quality metrics, such as Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index (SSIM) [Wang et al. 2004], Video
Quality Metric (VQM) [Pinson and Wolf 2004], and Spatio-Temporal
Reduced Reference Entropic Differencing (ST-RRED) [Soundarara-
jan and Bovik 2013] have been successfully predicting human sub-
jective performance in the fovea [Liu et al. 2013]. Recent work on
Learned Perceptual Image Patch Similarity (LPIPS) [Zhang et al.
2018] uses the calibrated perceptual metric, which passes the recon-
structed image and the target image through a VGG network [Si-
monyan and Zisserman 2014] pretrained on ImageNet dataset. This
recent metric was demonstrated to have an excellent perceptual
performance on various distortions. We employ this metric both as
a training loss and as one of the image metrics for ablation studies.

Only a few quality metrics were designed for foveated image qual-
ity assessment. FoveatedWavelet ImageQuality Index (FWQI) [Wang
et al. 2001] computes a multiscale Discrete Wavelet Transform
(DWT) on images, weighs coefficients using a frequency and ec-
centricity dependent CSF, then pools the result using a ℓ2 norm.
Foveation-based content Adaptive Structural Similarity Index (FA-
SSIM) [Rimac-Drlje et al. 2011] first weighs SSIM by a CSF that
depends on frequency, eccentricity, and retinal velocity then av-
erages these weighted coefficients. Swafford et. al [2016] extends
HDR-VDP2 [Mantiuk et al. 2011] with the eccentricity-dependent
CSF and a cortical magnification term.

2.5 Neural Denoising, Inpainting and Reconstruction

Machine learning models have been successfully used in a wide
range of image processing tasks. The most common model design
is a convolutional neural network (CNN), which is a feedforward
network with a cascade of convolution layers [Lecun et al. 1998].
Such networks are able to efficiently analyze the image and build
a hierarchy of multiresolutional semantic features that are train-
able for specific tasks. Following recent efforts towards stabilizing
training for deep networks [Krizhevsky et al. 2012], CNNs have
been able to achieve impressive results in many areas of image
processing, such as object localization [Girshick et al. 2014], image
denoising [Schmidhuber 2015], inpainting [Pathak et al. 2016] and
superresolution [Ledig et al. 2017]. We refer an interested reader to
the survey [Schmidhuber 2015]. Residual networks [He et al. 2016]

ACM Trans. Graph., Vol. 38, No. 4, Article 212. Publication date: July 2019.



212:4 • Kaplanyan, A. S. et al.

reformulate the problem of learning a function to learning a delta be-
tween the input and the output. This change allows better gradient
flow, often leading to better convergence and output quality.
Recurrent networks are often used for video processing tasks.

They maintain temporal context by conditioning the current frame
on the previous frames. This allows the model to exploit correlation
across frames. Multiple types of recurrent networks are used from
simple architectures [Chaitanya et al. 2017] to Long Short-term
Memory networks (LSTM) [Hochreiter and Schmidhuber 1997].

2.6 Learning the Manifold of Natural Images and Videos

High quality images and video follow regular natural scene statis-
tics [Ruderman 1994]. The human visual system has adapted to
expect these statistics [Geisler 2008] and heavily relies on it when
inferring the peripheral details. As a result, learning these statistics
can enable more powerful perceptual compression methods.

Generative adversarial networks (GAN) [Goodfellow et al. 2014]
can learn complex distributions, such as amanifold of natural images
or videos, by combining a generator with a trainable adversarial
loss, implemented using another network called a discriminator.
This trainable loss has enough capacity to learn extremely high-
dimensional distributions of data, such as the distribution of natural
images or videos. The discriminator plays a minimax game with the
generator network by learning to distinguish between the samples
from the generator’s distribution and real data samples.
Due to the inherent unstable equilibrium of the minimax game,

the training process for adversarial networks is unstable and sen-
sitive to hyperparameters. For example, if there is a significant
capacity imbalance between the generator and the discriminator
networks, the training can collapse with a trivial win of one net-
work. Regularization and training improvements have improved
the training robustness and stability. The Wasserstein GAN [Ar-
jovsky et al. 2017] redefines the adversarial training problem as a
simultaneous optimization of the generator and the Wasserstein-1
measure (also known as an earthmover’s distance) represented by a
discriminator network (also called critic). This new measure stabi-
lizes the training by providing a smoother distance function between
target and learned probability densities. It allows the generator to
progress in training even when the discriminator has advanced
further in training, avoiding training collapse. One recent improve-
ment to Wasserstein GAN is called a Spectral Normalization GAN
(SN-GAN) [Miyato et al. 2018] and it imposes the required Lipschitz
continuity on the Wasserstein measure, while relaxing the restric-
tions on the underlying discriminator network and thus allowing
for efficient training.
GANs have recently been used for large-scale single-image in-

painting [Liu et al. 2018], high-resolution image generation [Karras
et al. 2018], and generation using patch classification (PatchGAN) [Li
and Wand 2016].

Recent advances in learning video manifolds with GANs demon-
strate the potential of generating temporally coherent video results.
Similar to human perception, generative networks can inpaint large
portions of the video by learning high-level semantics and motion
dynamics around the missing video fragment. For example, recent
work [Wang et al. 2018] shows the feasibility of generating realistic,

stable video from segmentation masks. A nested network design
is used with background-foreground separation and an adversar-
ial loss on optical flow. Another work [Pérez-Pellitero et al. 2018]
introduces a recurrent network design for temporally stable video
superresolution, which is trained using a variant of optical flow loss
that promotes temporally consistent movements. This is achieved
by comparing the current generated frame to a previous generated
frame after warping according to an estimated optical flow. By con-
trast, a video-to-video retargeting work [Bansal et al. 2018] achieves
temporally consistent results without optical flow. The method is
able to generate stable frame sequences by requiring the result video
to match the original after being mapped back and forth between
different domains.

We employ recent advances in GANs and introduce two adversar-
ial losses to train DeepFovea reconstruction network to reconstruct
missing details in the periphery according to the learned statistics
from the manifold of natural videos.

3 PROBLEM SETTING

In rendering systems, each pixel requires a high amount of com-
putation. To reduce this workload, we draw a tiny subset of the
total number of required pixels each frame and infer the rest with
our model. Video captured from both the real world and realistic
renders follow strong statistical regularities known as natural scene
statistics [Kundu and Evans 2015; Ruderman 1994]. The human vi-
sual system is also adapted to comprehend real-world imagery that
naturally possesses these statistics [Geisler 2008]. This provides a
great opportunity for compression by relying on the statistics that
form the manifold of all natural videos.

3.0.1 Sparse Input. To reduce the number of bits required to encode
a signal, we subsample each frame using a sparse randomized mask.
By reducing the number of samples in the mask, the compression
rate directly increases. By shaping this mask according to the cell
density layout of the retina, we can perceptually allocate bits.

For each pixel position x of a source video frame, we first compute
the sampling rate R(x) ∈ [0; 1] based on the maximum perceptible
frequency, the geometric setup of the display, and the desired com-
pression rate. Please see supplementary material for more details.
For each video frame, our foveated sampling procedure fills an

NxM binary mask,M, according toM(x) = 1R(x)>U , where U is
a random variable bounded [0, 1], which can follow some uniform
random distribution. In the spirit of Mitchell [1991] and to better
follow the distribution of retinal cones [Cook 1986], we use a low-
discrepancy blue noise sequence (see Figure 1), using the void and
cluster algorithm [Ulichney 1993]. Valid pixels for a frame are then
selected based on this mask, and the mask itself is provided as
an input to reconstruction. We have also tested the network with
other sampling patterns, including uniform random sampling. The
network is largely agnostic to the sampling pattern, however, the
reconstruction quality degrades.
Importantly, the mask is sampled independently at every frame,

so the network can accumulate more context over time.
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Fig. 3. The network design used for video reconstruction is a recurrent video encoder-decoder network architecture with skip connections (based on U-Net).

The decoder part is modified to be stateful and hierarchically retains temporal context by concatenating (denoted with ∼) recurrent connections (orange).

3.1 Reconstruction Methodology

Let X = {x1, x2, ..., xK } be a sequence of K video frames, where
X ∈ RN×M×K . LetM = {m1,m2, ...,mK } be a sequence of binary
masks described in the previous section. We produce a sampled
video X̂ = {x̂1, x̂2, ...x̂K } by applying each mask to a corresponding
source video frame as X̂ = X ⊙M. The goal of the network G we
train is to learn to approximate the mapping X̂ 7→ X by leveraging
the large prior of the natural video manifold.

Our approach to the problem of sparse reconstruction is based on
a framework of generative adversarial networks, which was recently
shown to be able to learn large high-dimensional manifolds [Karras
et al. 2018]. Note that in contrast to generative networks, the input to
our network is not a random variable. The reconstruction network
design is based on a popular U-Net encoder-decoder architecture. To
allow the network to make use of inter-frame correlations, we add
recurrent layers to the decoder part of the DeepFovea network. We
use various techniques to stabilize network output in the temporal
domain, such as optical flow and temporal regularizations. Since
the ultimate goal of this network is to learn the projection from
sampled sparse video to a manifold of natural videos, we train it on
a large set of real-life videos. We discuss details of the DeepFovea
algorithm in the subsequent section.

3.2 Design Goals

There are several goals that we would like to achieve with our
method. First, the DeepFovea network should be able to operate
in an online mode, i.e., it should be able to reconstruct the current
frame based only on the past frames. Second, since we are targeting
gaze-contingent display systems, the network should be able to
operate in real time. This prohibits using complicated models or any
significant number of past or future frames.

There are also strict requirements for output quality. The human
visual system is not sensitive to high-frequency details in the periph-
ery, however, motion and flicker are easily detectable. Therefore,
while the peripheral reconstruction can omit fine details, it should
not introduce significant noise to achieve plausible results with high
compression. Given the uncertainty of the sparse video input, the
network needs to balance between introducing the new content
timely and suppressing flicker due to the inbound noise.

3.2.1 Causal Temporal Network with Recurrence. In order to lever-
age the temporal redundancy of the video and at the same time
achieve higher temporal stability of the reconstruction, we employ
a recurrent convolutional network architecture. This retained state

is then used at the next frame, allowing the network to super-resolve
the details through time (Figure 3). A common alternative approach,
early fusion, feeds a network a sliding window of L last frames,
however, it does not meet our performance requirements.

3.2.2 Performance Considerations. If the method is used for gaze
contingent reconstruction, it has to exhibit under 50ms of latency for
each frame in order to be unnoticeable for human vision [Guenter
et al. 2012]. Moreover, for head-mounted displays, the method has
to run at HMD’s native refresh rate and high resolution to avoid
motion sickness and provide a comfortable experience. For many
existing VR HMDs the minimum refresh rate is 90Hz.

4 NEURAL RECONSTRUCTION

4.1 DeepFovea Network Design: Recurrent U-Net

For the reconstruction network G of our system (Figure 3), we
chose the U-Net encoder-decoder designwith skip connections [Ron-
neberger et al. 2015]. It transforms an image into a hierarchy and
skip connections allow to bypass high frequencies and improve the
gradient flow during training.

Each decoder block does the reverse of an encoder block, performs
a spatial bilinear upsampling, while decreasing the feature count
correspondingly to the symmetric encoder block. The input to a
decoder block is the upscaled output of the previous decoder block
concatenated with the output of the corresponding encoder block
(skip connection, dashed arrows in Figure 3).

We use ELU activation function [Clevert et al. 2016] in all net-
works and layers (including recurrent and discriminator layers) to
accelerate the training.

4.1.1 Recurrence. In order to generate temporally stable video con-
tent, the network needs to accumulate state through time. Moreover,
a temporal network is able to super-resolve features through time
and can work with sparser input while achieving the same quality.
However, our network has to be causal (i.e., cannot see the future
video stream) and should have a compact state to retain over time
due to high video resolution and performance constraints. Complex
recurrent layers like LSTM [Hochreiter and Schmidhuber 1997] have
a large state and are computationally demanding. Therefore, in the
spirit of Chaitanya et. al [2017], we employ a recurrent modification
of the U-Net design with a a simple convolutional recurrent layer.
A hidden state h in this layer is an output from the previous time
step, i.e., for ith decoder block oi = hi = f (x,hi−1) (orange arrows
in Figure 3). ELU activation gives more freedom to the recurrent
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Fig. 4. Different losses we use to train the DeepFovea network to better learn video statistics and reconstruct plausible and temporally consistent videos.

layer compared to bounded activations (such as sigmoid), however,
it potentially allows to have a recurrent filter with an unbounded
positive feedback. Therefore, extra caution needs to be taken when
training these recurrent layers to be stable on very long videos. We
apply additional regularizations to recurrent connections to make
the network trainable, as described in Section 4.3.
Recurrent blocks are able to handle sudden temporal changes

of pixel density from gaze movements. It is sufficient to train the
networkwith constant-density videos, while stochastically sampling
the density for each video in the minibatch. In high-density regions,
the temporal hidden state stores high details. When the gaze leaves
the region, the recurrent blocks smoothly degrade the high-detailed
information over time in this region and simultaneously update
the temporal representation to be consistent with the sparse inflow
of pixels. The fovea reconstruction is always high quality and not
affected by the change of the density, because all valid pixels from
the input frame bypass the reconstruction and are sent directly to
the output frame. This bypass also forces the network to learn to
eliminate any temporal lag in the reconstruction during dynamic
gaze conditions, e.g., at the end of a saccade.
Convolutional recurrent blocks cannot efficiently move the con-

tent laterally to large image-space distances, because they are lim-
ited by the receptive field of their kernels. We reproject the hidden
state to compensate for the large-scale lateral motion to assist the
network with the head rotation in the HMD setup. We analytically
calculate an optical flow for each recurrent connection using two
view matrices for the last and the current frames to perform the
hidden states re-projection. We treat each hidden state as a texture
with multiple channels. We take each texel’s 2D coordinates in hid-
den state and project them back to the camera rotated view space.
To do so we calculate the product of inverted view (rotation only)
and projection matrices used to render the current frame assuming
the content is at infinity. Then we project coordinates back to the
screen space using view and projection matrices used to render the
last frame. Now having two 2D texel coordinates, last and current,
we copy texel’s data from the last to the current location. If the last
location is outside of the hidden state 2D bounds then the current
texel value is preserved.
Our choice of recurrent design, while being dictated by perfor-

mance considerations, leads to a lightweight network that is able
to efficiently accumulate and retain temporal context from a sparse
video at multiple scales.

4.2 Losses

We optimize the generator network G with respect to a weighted
sum of three losses (see Figure 4), namely, adversarial loss, percep-
tual spatial loss (LPIPS), and optical flow loss for temporal dynamics:

LG = wadv · Ladv +wLPIPS · LLPIPS +wflow · Lflow.

4.2.1 Adversarial loss. Adversarial loss is modeled by a discrimina-
tor network. The discriminator allows to learn the spatiotemporal
manifold of natural videos by providing a boundary between a distri-
bution of interest and the rest of possible videos. The discriminator
- in contrast to the generator - processes the entire video sequence
at once and can therefore reason about space-time relations and
analyze the spatiotemporal dynamics. The goal of the discriminator
is to classify videos into fake (constructed by the generator) and
real (sampled from the dataset).

We use aWasserstein GAN (WGAN) design [Arjovsky et al. 2017],
which stabilizes the training due to its robust loss function. We use
a 3D convolutional network D1 as a Wasserstein measure (see Fig-
ure 4) with recent Spectral Normalization GAN (SN-GAN) [Miyato
et al. 2018] to ensure 1-Lipschitz continuity. SN-GAN enables fast
training on videos, while providing more stable adversarial training.

The networkD1 has a 3D funnel structure and consists of residual
blocks [He et al. 2016] with decreasing spatial size. The network
operates on the whole video as an input. In order to enable full
analysis of spatiotemporal features, we employ 3D convolutional
layers with 3 × 3 × 3 spatiotemporal kernels. Each block contains
two 3D convolutions, followed by a 3D average pooling operation
that averages both spatial dimensions and the temporal one. We use
ELU as activation functions to allow the discriminator to recover
from sparsity, which reduces chances of training collapse. To focus
the network on fine details, instead of reducing the video to a single
scalar value, we follow a PatchGAN loss [Isola et al. 2017] and
require the network to classify local patches of generated videos.

4.2.2 Spectral normalization. An inherent assumption of WGAN
design is that the discriminator should be 1-Lipschitz continuous,
i.e.,∀x1, x2 : | f (x1)− f (x2)| ≤ |x1−x2 |. Standard networks generally
violate this constraint. There are several approaches to ensure 1-
Lipschitz continuity. We use recent Spectral Normalization in the
discriminator [Miyato et al. 2018] that bounds the matrix spectrum
of each layer’s weights. This approach allows for fast training, which
is crucial for training video networks, while leading to comparable
results with other state-of-the-art methods.
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4.2.3 Fourier-domain Discriminator. It is well known that the nat-
ural images have a characteristic statistics of a vanishing Fourier
spectrum. Natural videos also obey a similar natural spectral sta-
tistics [Kundu and Evans 2015]. Choi and Bovik [2018] introduce
flicker detection in 3D Fourier domain. In the same spirit, to help
the discriminator to learn the intricate relations between spatial
features and their natural motions, we introduce the second network
in the adversarial loss that learns the manifold of the spatiotemporal
spectra of natural videos. For that, we first Fourier-transform the
whole input video into its 3D spectrum. Then we use another dis-
criminator network with the same design as D1 to learn the spectral
manifold of natural videos. Since there are no image patches any-
more, we append two fully connected layers with 256 and 1 unit
correspondingly, with one ELU activation in between. This helps
to learn the structure of spatiotemporal frequencies that occur in
natural videos. Particularly, this loss helps detecting unnatural noise
and flicker.

4.2.4 Perceptual Spatial Loss. To promote similarity of each recon-
structed frame to its source frame, some measure of similarity is
needed. Per-pixel L1 loss is too low-level and prescriptive.

Instead, we use the calibrated perceptual loss (LPIPS) [Zhang et al.
2018]. By minimizing LPIPS, our network learns to endow each
reconstructed frame of the video with natural image statistics. This
also bootstraps the adversarial training, while providing enough
freedom to the reconstruction. A pretrained VGG-19 consists of five
blocks, each of which corresponds to a different level of abstraction
of the initial image. We take outputs of the conv2 layer from each
block to use as feature extractors:

LLPIPS(x1, x2) =
5∑
i=1

∥convi ,2(x1) − convi ,2(x2)∥1

Unfortunately, this loss improves only spatial (intra-frame) features,
while providing no temporal relation between frames. For peripheral
video quality, it is more important to enforce temporal coherency.
To make it cooperate with spatiotemporal losses and encourage
the gradient flow through recurrent connections, we exponentially
downweigh this loss for the first eight frames of the video. This loss
corresponds well with human perception [Zhang et al. 2018] and
gives enough freedom to the network.

4.2.5 Optical flow loss. We use optical flow loss to stimulate tempo-
ral consistency across frames and disentangle the spatio-temporal
correlation of video frames. There are multiple ways to employ the
optical flow in video generation. One is to estimate the optical flow
directly in the generator and require the generator to match the
target optical flow, as well as match the ground truth picture with
the warped image [Wang et al. 2018]. However, this adds complex-
ity to the network and does not meet our inference performance
constraints. Our methodology here is inspired by the recent work
on video super-resolution [Pérez-Pellitero et al. 2018], where the
optical flow is applied only during training by requiring the network
to match reconstructed frame with previous reconstructed frame,
warped by the known optical flowW as Lflow(x̂i , x̂i−1,W(i−1)→i ) =

∥x̂i −W(i−1)→i (x̂i−1)∥1. Here,W(i−1)→i (·) is the warping operator
that applies optical flow to reproject pixels of the frame i − 1 to the
frame i .

This indirect approach encourages the network to retain consis-
tent content and smooth movements over time, while not prescrib-
ing any particular spatial content.

4.3 Training Details

4.3.1 Network Parameters. There are five encoder blocks in our net-
work. Each consecutive encoder block downscales the input spatial
dimensions twice and increases the feature count (Figure 3). An en-
coder block consists of two 3x3 convolutions with ELU activations.
The second convolution layer is followed by an average pooling
layer. Both convolution layers in a block have the same number
of filters (32-64-128-128-128 for each block, correspondingly). The
bottleneck block processes the output of the last encoder layer with
a low spatial resolution and operates on high-level image semantics.
It is identical to the last encoding block, except that it upsamples
the input and has no skip connection.
Each decoder block consists of a 3x3 convolutional layer with a

recurrence (see next paragraph), followed by the second spatial 3x3
convolution layer, and a bilinear upsampling layer. Each layer is
followed by an ELU activation. The output of the recurrent layer
undergoes a layer normalization before activation. Decoder blocks
have the same number of convolution filters as the corresponding
encoder blocks (128-128-128-64-32). Symmetric padding is used
everywhere to prevent boundary artifacts on the image border.

4.3.2 Video Dataset. We train on videos sampled from a video
dataset [Abu-El-Haija et al. 2016] that contains a variety of natural
content such as people, animals, nature, text, etc. Each video has
resolution up to 640x480 and up to 150 frames. For each video, we
precompute the optical flow using the FlowNet2 network [Ilg et al.
2017]. Next, the video is downsized to 128x128 to meet GPUmemory
restrictions. Lastly, the videos are sliced into 32-frame-long chunks
with an overlap of 8 frames. The total number of video sequences
in the training set is about 350,000. During training, each 32-frames
video segment is corrupted with a stochastic binary mask, which
is generated with the same method as for the final reconstruction,
and the location on the retina is randomly sampled.

4.3.3 Training Hyperparameters. Training follows a standard adver-
sarial approach of interleaving updates to generator and discrimina-
tor, with one update for each network. The networkG starts to train
with 10% valid pixels in each frame, and this percentage is gradually
decreased to 1% during the first two epochs. It allows the network
to learn quicker in the beginning of the training process. We weigh
the losses aswadv = 1,wLPIPS = 100,wflow = 20 to roughly equalize
their magnitudes. We use ADAM optimizer [Kingma and Ba 2014]
with β1 = 0, β2 = 0.95 for 30 epochs and learning rate 3e-4. For
training a video network, we implemented a parallel distributed
training. Training for 30 epochs takes 48 hours on 7 NVIDIA DGX-1
nodes with 8 GPUs each. Batch size is chosen to be 56, corresponding
to one video per GPU.

4.3.4 Stabilizing a Recurrent Video Network. We found that the
network is unstable on long videos during the testing phase by
collapsing into a constant color video. This collapse occurs from the
unbounded positive feedback loop within the recurrent connections.
We use several techniques to stabilize the recurrent connections.
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Fig. 5. Ablation results on the recurrent blocks.

First, we apply layer normalization [Ba et al. 2016] to recurrent
layers, which helps keep the activations bounded. Second, we train
RNNs in a stateful manner, i.e., the hidden state is retained from
one minibatch to another. This allows each recurrent layer to start
with a reasonable content in hidden activations that lies within the
current working range during training, which helps the network to
remain stable during very long videos at inference time. At the very
beginning of the training, we initialize the hidden state using zero-
mean Gaussian noise with σ = 0.02. These improvements help the
stability of the recurrent design by preventing activation explosion
during inference.

4.4 Ablation study

To validate the design choices made for the network, we conducted
an ablation study. We analyze the network capacity, depth, as well as
the contribution of that loss to the final result. We use FWQI metric
to determine the spatial quality of reconstruction. Unfortunately,
since FWQI detects only artifacts of spatial reconstruction in a single
frame, it is not helpful tomeasure the temporal artifacts in peripheral
vision, such as flicker, which is of utmost importance for peripheral
reconstruction quality. To the best of our knowledge, there is no
peripheral spatiotemporal video quality metric, therefore, in order to
assess temporal reconstruction quality we provided sample videos
in the supplemental material.

4.4.1 Network depth. Our experiments show that the network ben-
efits from increasing the number of UNet blocks. The FWQI value
first increases sharply from 1 to 3, and then plateaus from 3 to 5
blocks. All networks have similar number of parameters (around
3M). One explanation is due to the sparse nature of the input, the
network benefits from the increase in receptive field. We use 5 levels
in the final design.

4.4.2 Network capacity. The number of filters follows a pattern of
doubling every layer with a cap of 128 filters, so we provide only
the number of filters in the first layer. Figure 6 shows that FWQI
increases when increasing the filters from 8 to 16. The metric keeps
a steady increase for values of 24 and 32, while plateauing at 48
features. In order to constrain the network’s inference performance,
we choose 32 as the final setting.
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Fig. 6. Ablation results on network capacity. FWQI metric shows the differ-

ence in spatial quality after 30 epochs. Different capacity is defined by a

number of filters in the first layer and a doubling every block.

4.4.3 Recurrent blocks. We show that recurrent blocks are essential
for the reconstruction with the sparse input. As shown in Figure 5,
recurrent design significantly outperforms the non-recurrent one as
measured by FWQI. We also demonstrate this result in the supple-
mentary video for subjective quality assessment. The non-recurrent
network works on a single sparse frame and is not able to accumu-
late additional details from previous frames, therefore, introducing
a significant amount of temporal noise even on high levels of input
density.

4.4.4 Losses. To validate that each of our losses improves the re-
construction, we compared multiple variants of the network with
losses being enabled one after another as LLPIPS , LLPIPS + Ladv,
LLPIPS+Ladv+Lflow. Unfortunately, FWQI does not provide a mean-
ingful comparison and can even decrease during this process. How-
ever, when observed, the video quality improves with each added
loss. The reason is because FWQI does not account for temporal
stability, which is the target of Ladv and Lflow losses. We provide
videos in the supplementary to demonstrate the improvements.

Unsurprisingly, LLPIPS allows the network to learn a only a single-
frame reconstruction, leaving a substantial amount of flicker. The
adversarial loss Ladv significantly improves the temporal stability
and suppresses a large portion of flicker. Optical flow loss Lflow
provides an additional improvement and reduces temporal noise,
such as pixel crawling, especially in case of long lateral camera
movements. Please refer to the accompanying video for comparison.

5 USER STUDY

Our design of the reconstruction network and its training is moti-
vated by the reconstruction process in human visual system that
is based on the natural video statistics. However, in order to vali-
date our method, we conduct an extensive user study. We compare
DeepFovea to the Multiresolution [Guenter et al. 2012] foveated
rendering method, and to the baseline with Concentric H.265 com-
pression. We use these two methods, because, unlike many foveated
rendering methods, they do not require any additional attributes
(such as surface normals, or semantics of the geometry). While
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(a) Multiresolution (b) DeepFovea (c) Original (H.265)

Fig. 7. A frame from the middle of GTA video at the moment of extreme motion. Both Multiresolution and DeepFovea are configured for 16x compression. The

gaze is in the center of the image. Our method is able to reconstruct more details under the same compression rate, while causing less flicker and ghosting

than Multiresolution. Note that it is not possible to reason about the peripheral quality using your foveal vision.

our method and Multiresolution can run in gaze-contingent mode,
Concentric H.265 method is too slow for this, so we precomputed
various compression layers and composited them concentrically in
runtime to allow gaze contingency in our experiments. First, we
measure artifact detectability as a function of sampling rate using a
method of constant stimuli. Second, we measure subjective quality
ratings for each method. This study helps us understand whether
detectable artifacts at a given sampling rate are also objectionable
in terms of quality. We run our experiment on two display setups: a
large projector screen and a head mounted display (HMD).

5.1 Screen Experimental Setup

We use a Digital Projection X-Vision WQXGA projector in a rear-
projection mode set to 120Hz refresh rate and a screen 243x152cm
with resolution 1920x1080 pixels resulting in 78◦ horizontal field of
view. Participants are seated at 150cm distance from the projector
screen, which provides 0.34 pixels per arcminute, which is sufficient
for evaluating peripheral quality. The participant’s head is stabilized
using a chin rest. For gaze tracking, we use EyeLink 1000 eye tracker
that we calibrate and validate for every subject. Its refresh rate is
500Hz, the latency is 5ms and the accuracy is 1◦. We asked every
participant to try to look closer to the center of the projector screen
to preclude tracking imprecision at extreme gaze eccentricities. The
experiment is conducted in a dark room. We include the screen
captures from the user study in the supplemental video under the
"Reconstruction with Dynamic Gaze" section. In contrast with the
real study, the videos are looped back and forth to increase their
duration for the viewer.

5.2 HMD Experimental Setup

We use an HTC Vive Pro HMD with resolution 1440x1600 pixels
per eye, 110◦ field of view, and refresh rate 90Hz with 0.28 pixels
per arcminute. We use a stock Pupil Labs eye tracker compatible
with HTC Vive with 200Hz refresh rate, latency of 5ms and an
accuracy of 1◦. We calibrated and validated the eye tracker for every

participant. We asked every participant to try to keep their head
stable, keeping it roughly straight ahead, and try to avoid extreme
gaze eccentricities.

5.3 Stimuli and Methods

We used ten diverse video contents for the screen experiment from
[Bampis et al. 2018] including some freely available videos [Haglund
2006], as well as rendered game content. Ten 360◦ videos were ob-
tained from Henry, a VR movie created by Oculus Story Studio,
content creator Hugh Huo, and JVET 360 video test content for
the HMD experiment. For both experiments, we rendered all of the
foveated videos using one of three methods: DeepFovea, Multires-
olution [Guenter et al. 2012] and Concentric H.265 compression.
We tested five sampling rates for all three methods in the screen
experiment. In HMD experiment, we tested three sampling rates for
Concentric H.265 and five for other methods based on the results
from the screen experiment. In each experiment, we also presented
the full-resolution non-foveated videos. Figure 7 provides compari-
son across the methods.

5.3.1 DeepFovea. We run our method in real-time with both cor-
ruption and reconstruction. The corruption step is only needed for
a video and subsamples it with a Sobol pattern. A rendered content
can be directly provided in a sparse form. The subsampled frame
is then given to the peripheral network G as an input. Upon re-
construction is done, the output of the network is presented to the
user.
For HMD, we compensate for head motion by reprojecting the

RNN hidden states with respect to the previous frame’s rotation.
This significantly helps the RNN layers to achieve temporal stability
during panning motions of the video.

5.3.2 Multiresolution. The Multiresolution method [Guenter et al.
2012] identifies three radially concentric regions based on perceptu-
ally optimized parameters. Examples of these regions are provided in
the supplementary materials. The exact placement and resolution of
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Fig. 8. Reconstruction in the same regions of Figure 1, shown with a variety

of compression rates (left to right, corresponding to 2/3/5/7/9% of valid

samples). Fine details degrade with higher rates.

these regions are found after optimizing against the minimum angle
of resolution (MAR), which predicts acuity as a function of eccentric-
ity. This optimization is sensitive to screen width, display distance,
and horizontal screen resolution. For the display experiment, we set
these parameters to 2.43 meters, 2.03 meters, and 1920px. Likewise,
for the HMD experiment, we set these parameters to 0.02 meters,
0.012 meters, and 1542px. Following the work described in [Guenter
et al. 2012], we find that the MAR slopem = 0.0376, downsampling
range of region three s3 = 5.20, radius of region one e1 = 3.25, and
radius of region two e2 = 9.35 for our display. Similarly we find
m = 0.0697, s3 = 6.79, e1 = 3.25, and e2 = 10.95 for our HMD.

5.3.3 Concentric H.265 Compression. We use the H.265 video com-
pression method as a reference to set a strong quality bar for our
method. H.265 requires all pixels in a frame as input, and, moreover,
it is allowed to look at all frames both in the past and in the future.
The concentric H.265 compresses the same three concentric regions
of interest identified in the Multiresolution method with the same
values for e1 and e2. The maximum total frame bit budget, B, for a
video is B = bpp ∗ cr ∗M ∗ N , where bpp is the average number of
bits per pixel, cr is the compression ratio, andM × N is the screen
resolution. The center region is encoded at 50Mbps, weighted by its
area to achieve high foveal quality while still providing bits for the
remaining two regions. The remaining bits in B are distributed to
the middle and outer regions to minimize perceptual impact. We
composite the three overlapping regions using a guardband with
linear blending. See the supplementary for more details.

5.4 Procedure

For both the screen and HMD setup, participants perform the same
experimental task. First, we calibrate the eye tracker and validate
the tracking accuracy for each participant. In a given trial, the par-
ticipants watch a 4 second video. Once the video is over, participants
have to give two responses. First, they make a detection judgment
about whether they detected artifacts in the video. They indicate
their decision with a key press. This is followed by a subjective
rating judgment where participants rate the visual quality of the
video. They indicate their response on a continuous scale repre-
sented as a slider bar which is marked with three labels, "Bad" on
the left end, "Excellent" on the right end and "Fair" in the middle.
The participants move the marker on the slider bar by using the
arrow keys. Once the participants are done with adjusting their

rating, they hit space bar to record the response and continue. Par-
ticipants are allowed to take as long as they wish to enter their
response, however, once entered, they are not allowed to change
them. In both the screen experiment participants repeat every trial
three times, in HMD experiment they repeat every trial twice. The
order of the trials is randomized for both experiments. The screen
experiment has a total of 480 trials and takes approximately 1.5
hours to complete. The HMD experiment has 280 trials and takes
approximately 1 hour to complete. Photos of the experimental setup
and the task are shown in supplementary materials.

5.5 Participants

We had eight participants for screen and five participants for HMD
experiment. All participants have normal or corrected to normal
vision and no history of visual deficits. The participants were not
aware of the experimental hypothesis. All participants provided
written consent before taking part in the study. Methods were ap-
proved by an external institutional review board (IRB). Before each
experiment, the participants were debriefed about the purpose of
the study and the experimental task.

5.6 Analysis

5.6.1 Probability Plots. For each method we calculated average
detectability probability across all participants as a function of com-
pression rate. For each average data point we calculated 95% confi-
dence intervals.

5.6.2 DMOS. We calculate Difference Mean Opinion Score (DMOS)
from subjective rating data per video per sampling rate for both
screen and HMD experiment. DMOS with normalization of subjec-
tive scores accounts for subjective variability and the perception
of different content types. Seshadrinathan et. al [2010] describe in
more detail the calculations for DMOS.
We also compute FWQI and FA-SSIM foveated quality metrics

for each video. To analyze the correlation between DMOS derived
from subjective ratings and the error metrics, we compute Spear-
man’s Rank Correlation Coefficient (SRCC) and Linear Correlation
Coefficient (LCC).

6 RESULTS

6.1 Inference Runtime Performance

The time to infer a FullHD frame on 4x NVIDIA Tesla V100 GPUs is
9ms. The DeepFovea model has 3.1 million parameters and requires
111 GFLOP with 2.2GB memory footprint per GPU for an infer-
ence pass. We implement a custom inference framework in C++ on
NVIDIA CUDA 10 and cuDNN 7.6.1. All calculations are performed
with 16-bit half floating point precision to leverage NVIDIA Tensor-
Core computational units. Time to sparsify a frame on a single GPU
is 0.7ms. We are able to achieve 90Hz in the HMD.

6.2 Numerical Quality Analysis

For each video per compression rate, we calculate two metrics,
FWQI [Wang et al. 2001] and FA-SSIM [Rimac-Drlje et al. 2011],
on the stimuli used in both screen and HMD experiments. Higher
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Fig. 9. Temporal coherence, computed by averaging the SSIM scores across

all adjacent frames, for the reference, DeepFovea, H.265, andMultiresolution.

Medians are in red and notches are 95% confidence intervals. DeepFovea

yields reconstructions with similar temporal coherence to the Original, while

Multiresolution yields higher coherence by temporal averaging.

values for FA-SSIM and FWQI indicate higher quality. Recall that
for DMOS, lower values indicate higher quality.

We calculate Spearman’s Rank Correlation Coefficient (SRCC), a
measure of monotonic correlation, and the Linear Correlation Coef-
ficient (LCC), a measure of linear correlation, to evaluate the pre-
dictive power between our subjective DMOS data and two foveated
image quality metrics, FWQI and FA-SSIM.
For the screen study, we find a significant negative correlation

between DMOS and FWQI with both SRCC and LCC (rs (150) =
−0.838,p < 0.001, r (150) = −0.764,p < 0.001). We find a smaller
correlation between FA-SSIM and DMOS (rs (150) = −0.256,p <
0.01, r (150) = −0.261,p < 0.01).
For the HMD study, the correlations between DMOS and FWQI

are (rs (130) = −0.6278,p < 0.001, r (130) = −0.6163,p < 0.001). We
observed no significant correlation between DMOS and FA-SSIM in
HMD. Therefore, DMOS has a significant negative linear and mono-
tonic relationship with FA-SSIM for only the screen experiment and
with FWQI for both the screen and HMD experiments. Scatter plots
of these results are included in supplementary materials.
We averaged the SSIM computed between adjacent frames to

measure temporal coherence. Figure 9 depicts the relative coherence
across the three methods and original non-foveated sources for
all videos. The coherence for DeepFovea is comparable to H.265,
which is indistinguishable from the reference. Multiresolution has a
high coherence, which is not surprising since it applies temporal
averaging to enforce it.

6.3 User Study Results

Figure 10 shows a summary plot for the screen experiment. Please,
refer to a Figure 7 in the supplementary materials for the HMD
results. To compare the results from other methods to DeepFovea,
we convert DeepFovea’s sampling rate into compression rate by
taking the reciprocal of the sampling rate. For Multiresolution, we
count the number of pixels in each region and divide by the total
to compute sampling rate, then use the same conversion process
to obtain compression rate. The plot shows average detectability
for all methods across the five compression rates tested. Additional
plots per subject per experiment are provided in the supplementary.
Based on the results from the user study, DeepFovea achieves

50% detectability of artifacts at 37x compression rate. Overall, Deep-
Fovea consistently out-performs Multiresolution across all sampling

Fig. 10. A summary of detectability results from screen experiment. Green

shows mean detectability for five compression rates measured for Deep-

Fovea. Red shows Multiresolution. Dashed brown line shows H.265 and the

dashed black line represents reference videos. The x-axis represents com-

pression rate. Error bars represent bootstrapped 95% confidence intervals.

rates, suggesting that by comparison, DeepFovea performs signif-
icantly better, even in low compression rates. On the other hand,
Concentric H.265 is not significantly different than reference across
all sampling rates. Towards 15x compression, DeepFovea gets closer
to the detectability of H.265, hence reference. Despite the fact that
H.265 uses 100% of the pixels to optimally encode to each com-
pression rate, DeepFovea starts approaching H.265 and reference
performance with only 9% valid pixels. For the HMD experiment,
DeepFovea is always below 50% detectability. Overall, DeepFovea
consistently outperforms Multiresolution across all compression
rates similar to the screen experiment results. Similar to the screen
experiment, H.265 is not significantly different than the reference.
With the HMD, DeepFovea has a significant improvement in artifact
detectability and becomes on-par with H.265, hence reference, at
around 25x compression rate, which means that at this compression
rate artifacts become, on average, undetectable.

The subjective rating scores are consistent with our findings from
the detectability study. Figure 11 shows FWQI vs DMOS for the
“iguana” video, which is representative of the rest of the content.
Lower DMOS means higher visual quality rating. In conclusion,
higher compression rates reduces visual quality, which is reflected
by the higher DMOS scores. A more comprehensive breakdown is
provided in the supplementary materials.
The DMOS from both the screen and HMD experiments show

that DeepFovea produces significantly better results than Multires-
olution. When considering each content individually, the subjective
ratings indicate that DeepFovea often produces better visual quality
when compared to the Multiresolution method. DeepFovea uses
a large learned prior for temporal reconstruction from the sparse
video, suppressing flickering and ghosting artifacts. Therefore, it
can achieve better results compared to the Multiresolution method.

6.4 Limitations and Future Work

While our method can be used for foveated rendering with supe-
rior compression quality, it can benefit from additional specialized
knowledge about the content. For example, high-level information,
such as the type of content (real/rendered/text/drawings etc.), or
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Fig. 11. Screen experiment on Iguana video. X axis shows DMOS (lower is

better) and Y shows FWQI prediction with 95% confidence intervals. Each

point is a method and sampling rate averaged across all users. This shows

how the quality distribution shifts across sampling rates for each given

method. DeepFovea often overlaps with H.265 for high sampling rates.

Fig. 12. Failure case showing reconstruction of a text on textured vs non-

textured background. The fixation point is at the center with peripheral text

located 9
◦
from fixation. The foveated sampling pattern is set to 9%.

object classes (e.g., ImageNet classes) or scene segmentation can
improve the network ability to inpaint context-dependent details.

6.4.1 Unnatural Content. Because our method is trained on the
natural video content, it performs best on natural and photorealis-
tically rendered content. While, as any regression-based method,
it performs fine on unnatural imagery, such as text, illustrations,
and non-photorealistic rendering, such content certainly poses hard
cases for the trained network. In particular, we noticed text recon-
struction quality differs depending on the background upon which
the text is rendered. Textured backgrounds negatively affect the
reconstruction of fine details present in the text, producing flicker
and ghosting artifacts. Figure 12 demonstrates this phenomenon.

6.4.2 Specialized Networks. Training a specialized network for com-
mon content and tasks, such as text reading, non-photorealistic
content, user interface, non-natural content, computer animation,
and so on, would allow to both decrease its size as well as improve
the quality for the specific content type it is trained for.

6.4.3 Extended Input. We decided to start with sparse images, be-
cause they can be almost universally obtained from many existing
systems and it poses a challenging problem for the network (hard
to super-resolve details through the noise, and hard to achieve tem-
poral stability). However, it is possible to change the input to the
network. For example, it is possible to generate a more compact
trainable latent embedding of the input video. Another option is to
augment the rendered input with auxiliary scene attributes, which
was shown to improve the reconstruction quality in similar set-
tings [Chaitanya et al. 2017]. There is also existing work, where a
network is trained to directly consume a compressed H.265 input.

6.4.4 Adaptive Sampling. In the spirit of existing work [Stengel
et al. 2016; Weier et al. 2016], it is possible to opportunistically im-
prove the reconstruction quality by allocating samples adaptively
according to the visual importance. It can be based on saliency maps,
frequencies of textures, object silhouettes, context, and tasks per-
formed by the user. Machine learning based attention and saliency
estimation methods can also guide adaptive sampling of image and
video content, for example, with the prediction based on image and
video classification networks, such as VGG-19 features.

7 CONCLUSION

We presented a neural reconstruction method for foveated render-
ing and video compression. We show that it is possible to leverage
the spatiotemporal statistics of natural videos to achieve an efficient
video reconstruction in the periphery. Our method demonstrates
temporally stable reconstruction from a noisy input and sets a new
bar of 14x compression rate in savings achievable for foveated ren-
dering with no significant degradation in perceived quality. Because
the method requires only color information as an input, it is also
suitable for foveated compression of video content. We open our
method for follow-up research on foveated reconstruction.
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