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Abstract—We investigate the use of automated Video Quality
Assessment (VQA) algorithms to evaluate digital video col-
lections. These algorithms are driven by well-defined natural
scene statistics (NSS), which capture the behavior of natural
distortion-free videos. Because human vision has adapted to
these real-world statistics over the course of evolution, quality
predictions delivered by these NSS-based VQA algorithms
correlate well with human opinions of quality. In particular,
we expect these algorithms to accurately predict quality on
sizable and diverse video collections. To test this hypothesis, we
gathered a testbed of video clips that represent a larger video
art collection. Next, we conducted a human study in which
users scored the quality of the clips. Enabled by the human
study, we trained three VQA algorithms (Video BLIINDS,
BRISQUE, and VIIDEO) using our testbed collection to assess
a real-world digital video art collection from our university
museum. Two of the algorithms provided good automatic
predictions of the quality of the videos. These same algorithms
also highlighted limitations that arise when assessing artistic
collections. We present current research progress and discuss
future directions for testbed and algorithm improvement. Our
ongoing effort furthers the field of Computational Archival Sci-
ence by applying computational models of human perception
to video appraisal and preservation tasks.

1. Introduction

Museums, libraries and archives are amassing significant
digital video collections for which appraisal and curation
decisions need to be made. Among other criteria, these
decisions concern video format, content, provenance, author-
ship, and condition. Evaluating video condition is a quality
assessment task which includes understanding the types and
degrees of distortions present throughout a single video.
Any diverse video collection can be expected to represent
a plethora of different encoding formats with individual
videos containing perhaps multiple types of distortions. The
presence of these distortions could be inherent to the file
format/encoding in which the video was created, or they
could be acquired through reformatting and transcoding
processes across a video’s lifecycle. Understanding the con-
dition of videos informs activities related to video appraisal,
selection, preservation, and access.

However, collecting institutions have difficulty knowing
the condition of their digital video collections since manual
assessment is time-consuming and nuanced. Typically, con-
dition assessment involves visual inspection by individuals
who should be very knowledgeable regarding degradations
inherent to analogue formats, modern digital compressions,
and digitization activities. Because collected videos may
include a wide variety of distortion types, there could be
inconsistencies and ambiguities in the condition report done
by humans. Furthermore, while there are software tools
that detect individual distortions in video objects, they still
require humans to decide on the overall quality of a piece. In
turn, individual video quality assessment should be normal-
ized in order to identify the condition of an entire collection
in a consistent fashion. Importantly, assessment solutions
need to scale with the growth of video collections.

In other application domains, such as digital television,
automated assessment of video condition is accomplished
using perception-based Video Quality Assessment (VQA)
algorithms. Video streaming services use these algorithms
to inspect incoming videos, and to later assess their post-
compression quality as they are delivered over the Inter-
net. We are interested in exploring how these kinds of
algorithms, or variations of them, can be used to assess
the quality condition of large video collections for long-
term archiving purposes. Specifically we study general no-
reference (NR) VQA algorithms: the Blind/Referenceless
Image Spatial Quality Evaluator (BRISQUE) [1], Video
BLIINDS [2], and the Video Intrinsic Integrity and Distor-
tion Evaluation Oracle (VIIDEO) [3]. No-reference refers to
methods that do not have a (presumably pristine) original
source video available for direct comparison. The most suc-
cessful NR algorithms predict motion picture quality using
perceptually relevant Natural Scene Statistics (NSS) models,
which describe statistical regularities arising in images and
videos of real-world scenes. To predict a final quality score
of an image or video, the algorithms use ‘quality-aware’
features that capture statistical departures from known mod-
els that accurately characterize pristine images and videos.
These departures are strongly correlated with the presence
of visual distortions. Quality-aware features are designed to
be sensitive to a large or even unknown set of distortions.
Common digital video distortions include, among many
others, blur, noise, and blocking. In addition, these quality-



aware features correlate well with human mean opinion
scores (MOS) of image and video quality, and thus we
expect that these algorithms may be successfully deployed to
accurately predict qualities of the contents of sizable digital
video collections.

To conduct automated NR VQA, digital videos are fed to
a VQA algorithm that has been pre-trained on a controlled
set of videos impaired by varying types and degrees of
distortion and on their associated MOS or difference MOS
(DMOS). Typical existing video quality controlled datasets
contain a small collection of unique content, each subjected
to a single synthesized distortion. As such, these datasets
do not capture the entire spectrum of distortions that are
observed in real-world video collections, nor do they contain
mixtures of distortions, which often occur together in com-
plex combinations. We are motivated to bring to bear recent
significant advances in this field towards finding a scalable,
automated, and reliable way to measure video quality for
use in video archival appraisal and preservation decision
tasks. Traditionally, these tasks are done by humans in a pen
and paper fashion. In the context of Computational Archival
Science (CAS), we are interested in the possibility of instead
using efficient and accurate perception-based VQA models
to ultimately conduct these archival processing tasks. This
could offer the possibility of greatly improved throughput,
consistency, accuracy, and scalability.

Towards these goals, we evaluated a video art collection
using algorithms trained on a set of videos containing real-
world distortion types. Toward this end, we assembled a
testbed video collection, as described in Sec. 3. In Sec. 4,
we describe a study wherein we obtained a large number of
human opinions of perceived video quality. This human data
was used as “golden” ground truth on which researchers can
seek to understand and model how the distortions existing
in the testbed impact perceived video quality. Section 5 pro-
vides a brief overview of the evaluated VQA algorithms. The
video art collection and project deliverables are described in
Sec. 6. In Sec. 7, we evaluate a set of VQA algorithms with
the aid of High Performance Computing (HPC) resources,
which allow efficient and timely testing on the larger video
corpus. Finally, we present conclusions and future work in
Sec. 8.

2. Previous Work

Automated video quality assessment solutions are de-
veloped to meet the needs of curators who are increasingly
concerned with managing large quantities of digital video.
The open source quality control tool for video preservation,
VCQ, enables automated objective analysis of digitized
video through multiple indicators, the results of which have
to be interpreted by collection curators [4]. A different
approach was undertaken by Esteva and collaborators, who
tested the ability of the VQA perceptual model BRISQUE
to rate the quality of individual videos on a large video art
collection using training data from a controlled dataset [5].
This latter approach provides a path by which a summary
condition score can be predicted based on the perceptual

mechanisms that drive human opinions of quality. Thus
far, VQA algorithms have only been trained on controlled
collections, neglecting the realistic case of co-occurring
distortions that happen in video art collections. This work
furthers this direction of research by training relevant VQA
algorithms on data that is representative of a video art
collection.

Video editing software uses quality indicators based
on certain video properties. Even though these individual
measurements may be helpful in the context of editing tasks,
the continuous range of video quality cannot be inferred ac-
curately from contrast, brightness, and camera motion alone.
Comparing motion information between a distorted and pris-
tine version of a video has been quite helpful in capturing
video quality [6]. However, motion has had limited appli-
cation to no-reference (NR) methods due to the difficulty
in capturing generalizable motion statistic regularities [7],
although some specific measures may be partially indicative
of video quality [8]. The trade-off between brightness and
contrast can be one powerful indicator of image quality by
taking into account how the human eye is sensitive to spatial
frequencies [9]. However, combining spatial contrast mask-
ing with motion is nontrivial for NR quality assessment.
In other words, perceptual pooling mechanisms regarding
how to combine local spatial-temporal measurements when
forming a single score of subjective quality are not yet well
modeled.

3. Methodology

The ultimate goal of this research is to rank videos con-
tained in a real-world video art collection on a continuous
quality scale, e.g., from worst to best quality. To develop
an automated system for ranking these videos, we must be
able to map each video content to a single quality score.
This mapping is enabled by leveraging perceptual statistics,
by modeling how the human visual system encodes spatio-
temporal masking [9], frequency regularities [10], scale
invariance [11], and the high order structural [12], [13]
properties in a given video. VQA algorithms employ various
methods for measuring these statistics. Machine learning
algorithms learn the mapping from all of the extracted
statistics to final subjective scores. This necessarily requires
a representative collection of videos with corresponding
subjective quality data.

Our real-world art collection, henceforth known as the
corpus, comprised of 18 videos gathered from the local
university museum. We also compiled a testbed collection
of 120 ten second video clips, each representative in quality
and content of a typical academic video art collection. The
testbed is comprised of 16 clips obtained from the corpus,
80 clips were obtained from video art students, and 24 clips
from free videos discovered through the Internet Archive.
These 120 clips were rated by human subjects by following
standard guidelines provided in [14].

We avoided evaluating the performance of VQA algo-
rithms trained using our testbed on controlled collections
like the CSIQ [15], LIVE VQA [16], or MCL-V [17]



Figure 1. Continuous sliding scale used by subjects.

Figure 2. Distribution of ages determined from the survey.

databases. First, we found that those databases only in-
clude a small subset of the types of distortions represented
in the testbed and in our corpus collections. Second, we
determined that these databases and associated opinions
were collected under different conditions of display distance,
display type, and display resolution. Third, we realized that
subjective opinions gathered for these databases assume that
a pristine reference video exists, and the provided subjective
scores are normalized with respect to these videos. Accord-
ing to Section 8 of ITU-T P.800.2 [18], we should not
compare opinion scores between databases that were not
designed to be compared, which validates our reasoning.
For our evaluations, we used standard cross-validation pro-
cedures involving only the testbed collection.

4. Gathering Human Opinions about Video
Quality

We conducted a human study to quantify video quality
following the same experimental procedures used in similar
studies [15], [16], [17]. Asking human observers to rate
video quality mainly requires that they have normal (or
corrected) vision, and that these observers understand video
quality is not based on the favorability of video content.
Participants were recruited via email to attend a 30-minute
video rating session, in which they were instructed to rate
video quality of the 10 seconds clips on a continuous sliding
scale with range 0-5. This sliding scale, as depicted in Fig.
1, contains indicators marking qualitative points of “Worst,”
“Fair,” and “Excellent.” The clips were viewed on a Google
Nexus 9 tablet, since tablets are an increasingly popular
choice when conducting human subjective studies [19]. We
also elected to use a tablet since it strikes a balance between
the physical size and visual quality [20] of displayed videos

Figure 3. Distribution of genders determined from the survey.
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Figure 4. Distribution of mean quality scores determined from the subjec-
tive study.

which may be viewed by typical consumers of archival video
content.

The study consisted of four steps administered by a
researcher: pre-survey, training session, test session, and a
post-survey. The pre-survey asked for demographic infor-
mation, participant vision impairment, and video viewing
habits. All participants then received a short training session
of 6 clips to understand the rating process before starting the
testing session. Researchers prepared the test room for view-
ing videos by dimming the lights to reduce glare, requesting
that participants silence cellular devices, and removing other
visual and auditory sources of distraction. After the test
session, each participant completed a post-survey, containing
questions about lighting, noticing distracting video content,
and whether they became disengaged during the session.

A total of 45 subjects participated in the study. This is
three times more than the minimum recommended number
of subjects for this type of study [14]. The distribution of
participant ages and genders are provided in Figs. 2 and
3 respectively. The median participant age was 37. Partic-
ipants were not selected based on background knowledge,
since we desired to collect ratings from naive observers,
as recommended in Section 2.5 of ITU-R BT.500-13 [14].
Most subjects, 27 total, had some type of visual impairment.
Among these, two subjects admitted lacking the necessary



TABLE 1. MEDIAN RESULTS FROM 1000 TRIALS OF 80%/20%
TRAIN/TEST SPLITS FOR THE BRISQUE ALGORITHM.

SVR RF

LCC SRCC MSE LCC SRCC MSE

0.8186 0.7771 0.3291 0.8538 0.7737 0.2605

TABLE 2. MEDIAN RESULTS FROM 1000 80%/20% TRAIN/TEST SPLITS
FOR VIDEO BLIINDS AND ITS INDIVIDUAL FEATURE GROUPS. THE

SYMBOL * DENOTES THAT ALL FEATURE GROUPS ARE USED.

Feature Group SVR RF
LCC SRCC MSE LCC SRCC MSE

* 0.8014 0.7281 0.3697 0.8412 0.7688 0.2795

NIQE 0.7918 0.7253 0.4029 0.8422 0.7757 0.2774

DC Features 0.0465 0.0825 1.0571 -0.0293 0.0086 1.1863

NVS Ratios 0.3733 0.4653 0.8808 0.1649 0.1455 1.0461

Coherency 0.4218 0.4652 0.9234 0.4506 0.3845 0.8783

Global Motion 0.2688 0.3216 1.0458 0.3081 0.2662 1.0416

corrective lenses, hence they were excluded from the study.
In the post-survey, all subjects agreed that the background
lighting of the test room was adequate, but some participants
complained about screen glare. Even though ITU-R BT.500-
13 [14] recommendations were followed, 9 of the subjects
were distracted during the task, and a total of 14 lost focus
at some point during the test. We decided not to reject
those who admitted to getting distracted, assuming any
variance from distraction would be averaged out given the
randomized video load order, and since we applied standard
subject rejection protocols.

Given the 114 videos used for the human study session
along with the 43 remaining subjects, we studied the distri-
bution of subject scores. Based on ITU-R BT.500-13 Annex
2.2 [14] recommendation, we rejected subjects whose scores
were statistically irregular. In the end, we rejected 8 subjects,
leaving a final total of 35 acceptable subjects. The scores
from these acceptable subjects were normalized then aver-
aged per video to compute Mean Opinion Scores (MOS).
The distribution of these normalized scores as depicted in
Fig. 4 shows a broad spread of video qualities, with a larger
representation of “Bad” and “Good” quality videos.

5. VQA Algorithms

No-Reference (NR) algorithms are used to measure
the perceived quality of images and videos when there
is no original or pristine version available for comparison
[21] [22]. We propose that NR algorithms could be use-
ful to understand a collection’s quality without the need
for humans to review each video. We used three differ-
ent algorithms developed at the Laboratory for Image and
Video Engineering: the Blind/Referenceless Image Spatial
QUality Evaluator (BRISQUE), Video BLIINDS, and the
Video Intrinsic Integrity and Distortion Evaluation Oracle
(VIIDEO). These algorithms take very different approaches

to quality assessment, but each fundamentally relies upon
Natural Scene Statistics (NSS) modeling.

BRISQUE measures the spatial NSS of images and pre-
dicts a score per frame. It first computes Mean-Subtracted
Contrast Normalized (MSCN) coefficients, which have been
observed to follow a Gaussian distribution for natural im-
ages. When natural images are subjected to distortion, the
distribution of these MSCN coefficients deviates predictably.
To produce a final rating on a video, BRISQUE perceptual
features are averaged across frames before applying a ma-
chine learning method to predict a subjective quality score.

Video BLIINDS measures spatial-temporal statistics to
predict a score for each video by incorporating multiple fea-
ture groups. The first feature group, “Spatial Naturalness,”
is computed using the Naturalness Image Quality Evalu-
ator (NIQE) [23], which measures picture “naturalness.”
The second feature group, “DC features,” detects irregular
changes in average luminance across frames, often caused
by compression-induced flicker. The “NVS-shape parameter
ratios” group measures the regularities arising from frame
differences. The “Coherency Measure” group is a statistical
measurement of the dominance of motion over local patches.
Lastly, the “Global Motion Measure” captures ego-motion
that may affect user perception of quality.

VIIDEO uses frame differencing and empirical space-
time correlation features computed over blocks to measure
inter and intra-frame difference statistics. The output of
VIIDEO is a single quality score, which, unlike previous
algorithms, is produced with no machine learning for map-
ping features to human scores. This, in principle, increases
its generality, albeit at the cost of reduced predictive power.

6. The Corpus and Open Data

Most of the videos in our corpus were produced be-
tween the years 2000 and 2008 and were distributed us-
ing DVD/MPEG-2 format. The remainder of the video art
was developed and stored using VHS formats, implying
that these pieces had gone through various digitization and
transcoding processes before they were distributed on DVD.
Most of the videos contain obvious distortions. Some of
them contain segments that do not correspond to natural
scenes.

Due to copyright conditions, we are unable to pro-
vide the clips as open data, as is customary with other
video databases. However, we are making the features of
Video BLIINDS and BRISQUE that were computed on the
database available online along with associated MOS scores
[24]. This information will allow others to make use of our
work.

7. Results

Before evaluating the algorithms, all videos in the corpus
and testbed were fit to the 2048x1536 native display resolu-
tion of the Nexus 9 tablet. After this preprocessing step, our
evaluation involved three components. First, in Subsec. 7.1,



we study overall testbed performance. Second, in Subsec.
7.2, we compute automatic video quality predictions by
applying the algorithms to be compared on our video corpus
collection. Third, in Subsec. 7.3, we study model prediction
outliers.

7.1. Algorithm Evaluation on the Testbed

We evaluated the algorithms and their feature groups,
which allowed us to identify those regularities that best cap-
tured departures from naturalness. We also identified which
feature groups contributed the most to the accuracy of the
final predictions. Since the content in our video collection
was compiled from unique scenes, we followed a standard
cross-validation procedure of randomly splitting the dataset
into a training portion of 80 percent, and a testing portion of
20 percent. We repeated this randomized training/test split
technique 1000 times, collecting prediction results on each
test set per trial. The repeated trials ensured that we obtained
overall measures of performance that were not affected by a
poorly represented training or testing subset. We report the
median Linear Correlation Coefficient (LCC), Spearman’s
Rank Correlation Coefficient (SRCC), and Mean-Squared
Error (MSE) over these trials. To formulate predictions
from the feature groups, two standard machine learning
models were used, Support Vector Regression (SVR) [25]
and Random Forest Regression (RF) [26]. Note that VIIDEO
does not need a learning model, since it provides a direct
score.

To provide an upper bound on algorithm performance,
we correlated half of the human mean opinion scores against
the other half. The SRCC between these two groups was
found to be 0.9667, which is high subject agreement. The
best performing algorithm would be expected capture the
average subject’s opinion, which should correlate highly
with the average opinions collected in our study given this
high subject agreement. Among the three algorithms, we
observed good performance from both BRISQUE and Video
BLIINDS, and poor performance from VIIDEO, which was
found to yield an SRCC of -0.2386. Therefore, we did
not further evaluate this model. Tables 1 and 2 compare
BRISQUE and Video BLIINDS, the feature groups, and
the machine learning models. From these results, we first
conclude that spatial information, i.e. features computed on
single frames, contributed the most to the overall successful
prediction. In fact, the temporal information (computed on
multiple frames, such as motion) provided by the “DC Fea-
tures,” “Coherency Measure,” and “Global Motion Measure”
feature groups provided little contribution to the predic-
tion accuracy. Since this has not been observed on other
video datasets, which are typically motion-intensive, this
may reflect the type of used video content in the museum
collection. When comparing between SVR and RF machine
learning models, RF provided the more accurate model.
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Figure 5. BRISQUE and Video BLIINDS final predictions for the corpus
collection using the RF regressor.

7.2. Algorithm Evaluation on Museum Corpus

By training BRISQUE and Video BLIINDS on the video
art testbed, we were able to obtain automatic predictions
of video quality on it. Since most real-world videos are
longer than 10 seconds, quality was predicted on 10-second
segments with the final score being computed based on the
average of these intermediate predictions. We utilized high-
performance computing (HPC) resources to compute quality
predictions within an acceptable period of time, since most
of the videos were of lengths on the order of 50,000 frames.
Figure 5 depicts these final predicted scores when using
the RF regression model on the museum collection. We
can see that the two algorithms agree well, achieving an
SRCC of 1.0 and an MSE of 0.0627 against each other. This
agreement makes sense, since the dominant feature group
in Video BLIINDS is NIQE, which uses the same kind of
features as BRISQUE. These results may be used to allow
a curator to understand the quality of each video art piece
in relation to the rest of the collection.

7.3. Evaluation of Outliers

To determine which videos in the video art testbed
collection of 114 videos were not predicted well by the
algorithms, we used leave-one-out cross-validation, training
on 113 clips, then predicting the quality of the left-out clip.
This yields the best possible prediction on the left-out video,
providing information about the types of video distortions
that are not captured, due to limitations that may exist in
either BRISQUE or Video BLIINDS.

By measuring the differences in predicted quality vs.
assessed quality, we found that 20 predictions differed from
the MOS scores by at least 0.625, the distance halfway
between two qualitative points on the quality scale. After
visually inspecting these outliers, we noted that they tend
to include non-natural artistically rendered scenes, heavy
VHS artifacts, dark scenes, color distortions, out-of-focus
regions, and black borders. These types of distortions are
not well accounted for in the tested algorithms. In addition,



these algorithms cannot capture color distortions since they
operate only on pixel luminance.

8. Conclusions and Future Work

We achieved our research goal of ranking the quality of
individual video art pieces and of producing a normalized
collection assessment, as shown in Fig. 5. However, we
also found that despite training on a realistic testbed, the
selected algorithms did not capture the entirety of distortions
present in the video art collection. This has motivated us to
work towards collecting a more representative testbed for
training VQA algorithms for archival applications. We are
gathering a publicly releasable testbed, to avoid licensing
restrictions, and we expect that the videos in this new testbed
will demonstrate more diversity of content and qualities.
In addition, distribution of this testbed along with the col-
lected human opinions will allow other researchers to make
progress on this complex problem.

From the gap between algorithm performance and sub-
ject agreement, we learned that existing VQA algorithms
still need further improvement. At a minimum, these al-
gorithms must account for the outliers observed in Sub-
sec. 7.3. We plan to utilize the naturalness features that
demonstrated good performance in Table 2 to produce better
VQA algorithms suitable for this task. We also plan to
research new features that describe general distortions by
employing feature-learning paradigms [27], [28] on large
video collections. From a CAS perspective, we demonstrated
progress toward automating a real-world archival problem,
but we need to conduct more research to further address this
problem.
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