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Abstract—Existing full-reference image quality assessment
models first compute a full image quality-predictive feature
map followed by a spatial pooling scheme, thereby producing
a single quality score. Here we study spatial sampling strategies
that can be used to more efficiently compute reliable picture
quality scores. We develop a random sampling scheme on single
scale full-reference image quality assessment models. Based on a
thorough analysis of how this random sampling strategy affects
the correlations of the resulting pooled scores against human
subjective quality judgements, a highly efficient grid sampling
scheme is proposed which replaces the ubiquitous convolution
operations with local block-based multiplications. Experiments
on four different databases show that this block-based sampling
strategy can yield results similar to methods that use a complete
image feature map, even when the number of feature samples is
reduced by 90%.

I. INTRODUCTION

We study the effects of sub-sampling feature maps used
in full-reference (FR) picture quality analyzers as a way
of achieving efficiency without sacrificing performance. The
work presented herein can be related to reduced-reference
(RR) models, in the sense that the goal is to show, even for
FR models, that the entire reference image is not necessarily
required to produce accurate picture quality predictions. For
example, one leading RR method, the RRED indices [1], uses
subsampled wavelet subband information from both pristine
and distorted images to predict image quality, thereby allowing
a controlled, variable amount of information to be used. The
RRED model ranges from a FR version, through graded levels
of compared information, down to a single number derived
from the reference. However, the RRED indices are computed
using an overcomplete steerable wavelet transform, which
requires all pixels from the reference and distorted images.
Likewise, an approach based on block-based pooling strategies
[2] demonstrates a similar limitation.

The approach proposed herein allows the final pooling of
spatial quality features to be intertwined with the model com-
putation. For example, most IQA models compute dense spa-
tial feature maps which are generally redundant. Knowledge
of such redundancies can be used to redesign the computation
procedure. After appropriate redesign, most full-reference IQA
models can yield statistically indistinguishable results.

Requiring the use of only a subset of the input data can have
a large impact on future IQA algorithm design. The number
of computational operations required for quality models is
often a function of the image feature map size. By effectively

modifying the feature map size, existing IQA models can be
modified for real-time applications, without a noticeable loss
in predictive performance. Also, by such efficient sampling
strategies, any FR method becomes a RR method, since only
a portion of the source reference image is used for quality
assessment. The rest of this paper is organized as follows.
Section II describes a random sampling strategy for single
scale FR methods. Section III studies the impact of sampling
on quality prediction efficacy. Section IV describes our block-
based sampling strategy, and Section V describes experimental
results. Lastly, Section VI concludes the paper and discusses
future work.

II. RANDOM SAMPLING PROCESS

We first describe a simple yet instructive approach to FR
random sampling. Assuming that I and J are pristine and
distorted versions of the same m × n image, a typical FR
IQA model applies a w ×w filter to yield two filtered and/or
non-linearly processed images If and Jf . To retain only valid
portions (unaffected by image boundary effects) of the filtered
images, the inner m̃× ñ region is obtained, where m̃ = m−w
and ñ = n − w. Depending on the IQA model, this process
may occur multiple times, possibly at different scales and/or
orientations, either in parallel or in series, to obtain a number
of filtered images.

In the case of the Structural Similarity Index Metric (SSIM)
[3], several filtered and processed images are produced, in-
cluding a local mean and variance map, for both I and J .
These maps are combined to produce a dense SSIM map.
Given the correlations produced by both filtering and by pre-
existing relationships between pixel neighbors, the resulting
dense SSIM map is highly redundant.

To test for redundancy in the dense SSIM map, a subset of
it can be extracted using random sampling. Define N(p) =⌊
pm̃ñ

100

⌋
as the number of pixels to select, where p ∈ (0, 100]

is the percentage of the slightly cropped image size and b.c
is the floor function. Clearly, p = 100 indicates that every
available feature sample is used. Note that samples can be
selected “with” and “without” replacement. The former allows
for a particular pixel location to be selected more than once
(every index is picked independently with probability 1

m̃ñ ),
while the latter results in a vector of unique samples. Using
either random sampling scheme, a vector of computed points is
gathered from the SSIM map. If these samples were adequate



to represent the overall picture quality, then SSIM would only
need to be computed at the selected samples. Since the mean
of the original SSIM map is used as the quality score, the mean
of these sampled locations can be thought of as an estimate
of the original “Mean SSIM”.

To formalize, let B be the set of points {xi} = {(xi, yi)}
∀i = 1 . . . |B| in a given image. Given the SSIM index
map M , the SSIM value s, is given by s =

∑
i∈B

M(xi).

Next consider T subsets of B, defined as Aj ⊂ B, where
|Aj | = |B| p

100 = N(p) and j ∈ 1, 2, . . . , T . The estimate
ŝj corresponding to the jth trial is ŝj =

∑
i∈Aj

M(xi). Using

repeated independent trials, the distribution of ŝj across trials
can be compared to s. Clearly, ŝj will generally differ from
s to some degree for p < 100, and will be equal to s
when p = 100. Therefore, we study the sampling distribution
formed by ŝj when p < 100. From this point forward, the
SSIM index map produced at all picture coordinates (x, y)
minus any border cropping (the traditional SSIM index map)
will be referred to as the parent distribution. Clearly, the
parent distribution may be highly non-Gaussian. However, a
histogram plotted using T realizations of ŝj yields an empirical
probability density function (epdf) that appears Gaussian, as
depicted in Fig. 1. Ignoring the obvious underlying image
and model-related dependencies, the distribution of ŝj likely
approaches a Gaussian shape as a consequence of the Central
Limit Theorem; although conditions (such as independence) of
sampled values from a SSIM map have not been established,
it is likely nearly true when the between-sample distance is
only moderately large. We have noted that the spread of the
epdf decreases with larger p.

Fig. 1 depicts the sampling distributions both “with” and
“without” replacement. In both cases, the epdfs can be well
approximated by a Gaussian distribution. By examining these
distributions, it can be seen that the “with” replacement
scheme increases the spread of the sampling distribution, since
for a given p it uses a smaller number of unique indices in
the SSIM index map than the “without” replacement scheme.
Hereafter, a “without” replacement scheme is used, because
in practice reducing the number of samples is preferred. Next,
by letting T = 104 and p ∈ [10, 20, . . . , 100] for any given
image, the sampling distributions can be studied as a function
of p. As depicted in Fig. 1, decreases in p lead to wider
sampling distributions. By contrast, if p = 100, the distribution
degenerates into the mean of the parent distribution for each
iteration.

There are two competing forces when p increases. On the
one hand, the probability that a sample is picked close to some
other sample already selected is increasing. Since samples that
are closer to each other tend to have correlated SSIM values,
local dependencies are introduced for these few neighbours of
every sample. On the other hand, the number of samples that
are independent for this sample are greatly increased, thereby
supporting the CLT argument. This observation can be verified
by examining the shape parameter of the generated sampling
distributions. We adopt the moment matching method also
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Fig. 1. Left: sampling distribution “with” and “without” replacement using
p = 25 and T = 104 trials. Right: sampling distribution across different p
values after T = 104 trials. The vertical line for p = 100 does not reach
T = 104 due to arithmetic precision errors. This is only a plotting artifact.
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Fig. 2. Shape parameter for SSIM (left) and FSIM [5] (right) across different
p values on 50 randomly selected image pairs on the LIVE [6] dataset. The
sampling distribution is close to a gaussian since α is close to 2. The number
of trials was set to 5000.

used in [4] i.e. we examine whether the α (shape) parameter is
close to 2. The parameters βl and βr can also be used to check
the symmetric nature of the sampling distribution. As shown
in Figs. 2-3, the sampling distribution for SSIM and FSIM are
very close to a symmetric gaussian distribution across different
values of p.

In the simple random sampling strategy analyzed here, a full
feature map is produced first, and then random indices from
the SSIM map are selected to compute the final SSIM index.
As an alternative, one could apply a block based computation
around those indices, then compute the SSIM index. These
two approaches yield the same result. However, we use the
random sampling strategy only to analyze the properties of
sampling FR IQA models. Later, we exploit these properties
to propose more practical sampling schemes.

III. IMPACT OF SAMPLING ON CORRELATIONS WITH
HUMAN SCORES FOR FR IQA METHODS

Next, we analyze the relative quality prediction performance
of original and sampled FR models. Let i ∈ [1, 2, . . .K] index
a collection of pristine/distorted image pairs {Ii, Ji}, where
K is the total number of available image pairs. Suppose that
the SSIM quality score produced from a full SSIM map with
no sub-sampling is si, and let vi ∼ N (0, σ2

i ) be a Gaussian
distribution which will act as a noise term. Based on the
empirical observations of the previous sections, the SSIM
quality score of image pair i after sampling with percentage
p can be modeled as zi = si + vi, where σi decreases with
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Fig. 3. β values for FSIM across different p values on 50 randomly selected
image pairs on the LIVE dataset. Left: βl; Right: βr . Both β values decrease
when p increases. The sampling distribution for FSIM tends to be symmetric
since, given p, βl is close to βr . The number of trials was set to 5000.

increasing p. This model captures the observation that smaller
p values increase the spread of the sampling distribution.

Using this model to describe the sampling effect, the sam-
ples si may be viewed as realizations of a random variable
S, and the samples zi of another random variable Z. Since
σi will vary across images, consider the worst case, i.e. let
σw = max{σ1, σ2, . . . , σK} = max

i
{σi}, then let all σi be

modeled as σw. In other words, let V ∼ N (0, σ2
w) denote the

worst case when choosing a particular p in a given sampling
strategy. Therefore, the model can be simplified to Z = S+V .

The question, then, is how well the prediction from SSIM
samples correlates with human subjective judgements of qual-
ity. The Pearson correlation coefficients (PCC) between the
recorded human scores, denoted by Y , and the sampled (Z)
and non-sampled (S) objective scores are given by:

PS,Y =
E[SY ]− E[S]E[Y ]√

E[S2]− E[S]2
√
E[Y 2]− E[Y ]2

(1)

PZ,Y =
E[ZY ]− E[Z]E[Y ]√

E[Z2]− E[Z]2
√
E[Y 2]− E[Y ]2

=
E[XY ]− E[X]E[Y ]√

E[X2]− E[X]2 + σ2
w

√
E[Y 2]− E[Y ]2

(2)

From (1) and (2), PS,Y refers to correlation without sub-
sampling, and PZ,Y refers to correlation after sampling. Natu-
rally, it is to be expected that PZ,Y ≤ PS,Y since Z is a noisy
estimate of S. As shown experimentally, this may correspond
to a very small drop in practice.

IV. BLOCK-BASED SSIM OPTIMIZATION

Naturally, to achieve efficient IQA, samples should be
chosen such that they do not belong to the same block of size
w. An obvious choice is to grid sample with a stride of at least
w pixels in both the x and y direction. To do so, I and J can be
directly multiplied by a grid of filters, then appropriately added
and subtracted. This grid of filters is created by repeating the
original w × w filter m′ = bmw cw times in the x direction
and n′ = b nw cw times in the y direction, thereby creating an
image Ŵ of size m′ × n′ (see Fig. 4).
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w
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Fig. 4. Creating Ŵ for BB-SSIM. Here, w = 3 for simplicity.

By appropriately multiplying the original images with Ŵ ,
a block-based efficient version of SSIM (BB-SSIM) can be
derived. First, I and J are cropped and then multiplied
element-wise by Ŵ . Then, a block-based mean computation
on I � Ŵ and J � Ŵ yields µ1 and µ2. Further, compute
µ12 = µ1 � µ2, µ2

1, µ2
2, I2 and J2 by element-wise multipli-

cations e.g. J2 = J � J . Multiplying I � J , I2 and J2 by Ŵ
and subtracting µ12, µ2

1 and µ2
2 yields σ2

1 , σ2
2 and σ12. Finally,

using the SSIM formula, one can combine the block-sampled
mean and σ images (for both images and their product), then
take an average over the resulting block-based feature map to
produce a single “Mean SSIM” score. Clearly, the efficiency
of this method depends on whether the block-based summing
step is optimized in hardware.

It can be shown that the original SSIM method needs
3mn+m̃ñ(10w2+17) Floating Point Operations (FLOPs). By
contrast, BB-SSIM needs only m′n′

(
17
w2 + 13

)
FLOPs. As-

sume that m,n are large enough, i.e. m̃ ≈ m, ñ ≈ n, m′ ≈ m
and n′ ≈ n. Then, the original SSIM needs mn(10w2 +
20) FLOPs whereas BB-SSIM needs mn

(
17
w2 + 13

)
FLOPs.

Notice the gain term scales inversely with w2. By setting
w = 11, the speedup in terms of floating point operations
(FLOPs) is approximately 93.6. In the experimental section,
this computational gain is practically quantified.

V. EXPERIMENTAL SECTION

We conducted standard deviation measurements on the
correlation scores for SSIM and PSNR and compared them
for the same p in Fig. 5. Perception-based IQA models
should be more compressible when compared to signal fidelity
measures like PSNR, in part because the former uses spatial
filters to compute neighborhood responses and also since the
perceptual results are more consistent. Comparisons are made
on the LIVE dataset, which consists of 779 artificially distorted
images, each distorted with varying levels of jp2k, jpeg,
white noise, fast fading or gaussian blur distortions. PSNR
and SSIM predictions were computed using the sampling
technique 100 times with p = 40. In Fig. 5, the sampling error
is compared between SSIM and PSNR for all five distortions.
Clearly, PSNR exhibits higher sampling errors across all five
distortions. Standard deviation is observed to be influenced by
distortion type. As an example, for the gaussian blur distortion
the standard deviation is larger for both PSNR and SSIM.
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To further understand the per-distortion behavior of the
random sampling strategy, the same SSIM sampling strategy
was followed on the 23 distortions described in the TID13
dataset. As shown in Fig. 5, distortions 14, 15 and 18 show
higher sampling error than the other distortions. These indices
correspond to “Non eccentricity pattern noise”, “Local block-
wise distortions of different intensity” and “Change of color
saturation”. The first two of these distortion categories are
local distortions, leading to the conclusion that the random
sampling strategy performs statistically worse on local distor-
tions. This likely follows from the fact that few samples might
be taken in the locally distorted region.

We now study the following three methods: the original FR
method (p = 100), the random sampling scheme using p = 1
and a grid sampling scheme where we first precompute the
entire feature map and then perform a 11-grid sampling. The
parameter p = 0.01 approximates the number of points used
in the 11-grid sampling, where every non-overlapping block
contains 121 pixels, of which only one value is kept.

In the experiments to follow, four popular image quality
datasets are considered, namely CSIQ [7], TID2008 [8], LIVE
[6] and TID2013 [9]. The FR IQA methods that are evaluated
are PSNR, SSIM [3], IW-SSIM [10] and FSIM [5]. Note that
for FSIM, only its grayscale version is used for comparability
with the other methods. Table I lists the correlation scores
for the four different FR methods. For IW-SSIM, only 10
iterations are performed due to computational reasons, but the
results are still consistent. For random sampling, the average
value obtained over all iterations is listed. It can be seen that,
in many cases, results obtained using the 11-grid method are
close to both the averaged random sampling quality predictions
and the unsampled scores. However, a clear improvement
is obtained on a more complex model such as IW-SSIM.
The key advantage of the block-based sampling technique is
that it always produces the same result, unlike the random
sampling strategy. The advantage of using a deterministic
sampling strategy is that the algorithm can be computationally
optimized based on the keypoints. For the case of SSIM,
when the block size is 11, the correlation score is 0.9111,

which is very close to the unsampled value of 0.9104 on
the LIVE dataset. Similarly, the same block size used on the
TID13 dataset achieves a correlation score of 0.6308, while the
non-sampled correlation is 0.6313. Clearly, the grid sampling
strategy produces nearly the same result.

As shown in Figs. 6-7, which depict boxplots per database
for the random sampling strategy applied on SSIM, FSIM and
IW-SSIM, using a small value of p increases the sampling
uncertainty. In these boxplots, the horizontal axis shows the
percentage p

100 and the vertical axis shows the distribution
of the correlation scores produced by different sub-sampling
trials. Also, the average values of the SROCC correlation
scores over all p are close to those obtained by using the entire
feature map. Furthermore, using small values of p when sub-
sampling usually produces an underestimate of the correlation
score verifying the theoretical analysis laid out in Section III.
As p increases, the CLT assumption likely still holds but the
standard deviation of the sampling distribution reduces thus
it is more difficult to determine whether the correlation score
produced by larger p values is an underestimate of the actual
value (denoted by green). Across all FR methods and datasets,
the reduced information resulting from the random sampling
strategy yields little loss in predictive power.

By implementing the block-based sampling method, clear
performance gains are possible in terms of multiplies and
adds, at least for SSIM. To test these gains, only the core
operations in an existing Matlab SSIM implementation are
modified. The execution times are provided in the columns of
Table II. Note that BB-SSIM is approximately 1.5 to 2 times
faster than SSIM. Also, note that the correlation scores for the
11-grid method, which uses a block size of 11× 11 reported
in Table I are very close to the ones produced in Table II.
The difference between the two lies in the following. Let B1

denote the first block from the full SSIM index feature map.
The 11-grid method picks the center pixel in this block, while
the BB-SSIM method will generate the top left pixel in this
block instead.

VI. CONCLUSION

We explored different sampling strategies to efficiently esti-
mate several single scale FR IQA metrics. By studying random
sampling strategies, it has been determined that systematically
reducing the information used to compute a final IQA score
generally has little effect on the correlation with human sub-
jective scores. The underlying redundancies produced by many
IQA metrics such as SSIM, along with image content depen-
dencies and spatial uniformities of distributions of distortions,
enables the grid sampling scheme, which can be implemented
using block-based operations. These operations can be used as
a building block for many other IQA (or VQA) models, since
the sampling procedure is easily extensible. The experimental
results obtained on four popular datasets demonstrate that the
block-based sampling strategy can achieve results that are
very close to traditional FR methods at a fraction of the
cost. Although the sampling strategies proposed herein are
appropriate for single scale FR methods, they may be extended



TABLE I
EXPERIMENTAL RESULTS OF RANDOM SAMPLING FOR FR IQA METRICS ON 4 DATASETS, ROWS 1-3: 100 ITERATIONS, ROW 4: 10 ITERATIONS.

Method LIVE TID13 TID08 CSIQ
p = 100 p = 1 11-grid p = 100 p = 1 11-grid p = 100 p = 1 11-grid p = 100 p = 1 11-grid

PSNR 0.8756 0.8714 0.8742 0.6468 0.6215 0.6469 0.5559 0.5226 0.5560 0.8058 0.8066 0.8049
SSIM 0.9104 0.9103 0.9111 0.6313 0.6311 0.6308 0.6332 0.6326 0.6324 0.8369 0.8367 0.8369
FSIM 0.9634 0.9621 0.9607 0.8028 0.7970 0.8003 0.8825 0.8749 0.8764 0.9242 0.9230 0.9254

IW-SSIM 0.9568 0.9200 0.9572 0.7806 0.7467 0.7769 0.8566 0.7904 0.8534 0.9206 0.8611 0.9216

TABLE II
SROCC CORRELATION SCORES AND COMPUTATIONAL TIMES (IN

SECONDS) ON DIFFERENT DATASETS. TIME CORRESPONDS TO THE ENTIRE
COMPUTE TIME NEEDED ON EACH DATABASE.

Database SSIM BB-SSIM t tBB−SSIM

LIVE 0.9104 0.9113 18.5313 11.2545
TID13 0.6313 0.6311 42.1429 23.1630
TID08 0.6332 0.6328 23.3832 12.7633
CSIQ 0.8369 0.8363 16.0295 10.0055

to multiscale FR, NR IQA methods [12], [13], [4] and to
video quality assessment (VQA) [14], [15], [16], which are
interesting future research directions.
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be better seen in color.
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Fig. 7. FSIM correlation scores against percentage p
100

on TID13 over 100
iterations. The actual correlation score is denoted by green. This figure can
be better seen in color.
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